Farmers’ Intentions to Lease Forestland: Evidence from Rural China
Abstract
:1. Introduction
2. Model Design
2.1. Conceptual Model
2.2. Empirical Model Specification
2.3. Model Estimation
3. Methodology
3.1. Study Area
3.2. Data Collection
3.3. Data Description
4. Results
4.1. Farmers’ Intention and Past Experience of Leasing in and Leasing out of Forestland
4.2. Factors affecting Farmers’ Intention of Leasing in Forestland
4.3. Factors Affecting Farmers’ Intention of Leasing Out Forestland
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kung, J.K.S. Shouying Liu Farmers’ preferences regarding ownership and land tenure in post-Mao China: Unexpected evidence from eight counties. China J. 1997, 38, 33–63. [Google Scholar] [CrossRef]
- Zhang, Y.; Uusivuori, J.; Kuuluvainen, J. Impacts of economic reforms on rural forestry in China. For. Policy Econ. 2000, 1, 27–40. [Google Scholar] [CrossRef]
- Kung, J.K.S. Off-farm labor markets and the emergence of land rental markets in rural China. J. Comp. Econ. 2002, 30, 395–414. [Google Scholar] [CrossRef]
- Ho, P. Institutions in Transition: Land Ownership, Property Rights and Social Conflict in China; Routledge: New York, NY, USA, 2005; ISBN 9780199280698. [Google Scholar]
- Krusekopf, C.C. Diversity in land-tenure arrangements under the household responsibility system in China. China Econ. Rev. 2002, 13, 297–312. [Google Scholar] [CrossRef]
- Brandt, L.; Rozelle, S.; Turner, M.A. Local Government Behavior and Property Rights Formation in Rural China. J. Inst. Theor. Econ. 2004, 160, 627–662. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yao, Y. Egalitarian land distribution and labor migration in rural China. Land Reform Land Settl. Coop. 2002, 1, 80–91. [Google Scholar]
- Kung, J.K.S. Equal entitlement versus tenure security under a regime of collective property rights: Peasants’ preference for institutions in post-reform chinese agriculture. J. Comp. Econ. 1995, 21, 82–111. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y.; Li, L.; Yang, S. Markets for forestland use rights: A case study in Southern China. Land Use Policy 2013, 30, 560–569. [Google Scholar] [CrossRef]
- Zhou, Y.; Shi, X.; Ji, D.; Ma, X.; Chand, S. Property rights integrity, tenure security and forestland rental market participation: Evidence from Jiangxi Province, China. Nat. Resour. Forum 2019, 43, 95–110. [Google Scholar] [CrossRef]
- Xie, Y.; Wen, Y. Empirical Study on the Influence Factors of Farmers’ Forestland and Stumpages Transfer. J. Beijing For. Univ. 2009, 8, 48–54. (In Chinese) [Google Scholar]
- Yin, R.; Yao, S.; Huo, X. China’s forest tenure reform and institutional change in the new century: What has been implemented and what remains to be pursued? Land Use Policy 2013, 30, 825–833. [Google Scholar] [CrossRef]
- Xie, Y.; Gong, P.; Han, X.; Wen, Y. The effect of collective forestland tenure reform in China: Does land parcelization reduce forest management intensity? J. For. Econ. 2014, 20, 126–140. [Google Scholar] [CrossRef]
- Liu, C.; Wang, S.; Liu, H.; Zhu, W. Why did the 1980s’ reform of collective forestland tenure in southern China fail? For. Policy Econ. 2017, 83, 131–141. [Google Scholar] [CrossRef]
- Xie, Y.; Wen, Y.; Zhang, Y.; Li, X. Impact of property rights reform on household forest management investment: An empirical study of southern China. For. Policy Econ. 2013, 34, 73–78. [Google Scholar] [CrossRef]
- Kong, F.; Du, L. Research on Regulating the Circulation of Collective Forest Property Rights. Issues For. Econ. 2008, 5, 377–384. [Google Scholar]
- Nie, Y. Forestry-property-rights-circulation efficiency and constraints analysis. Ecol. Econ. 2009, 6, 90–94. [Google Scholar]
- Kong, F.; Liao, W. An analysis of farmer households’ woodland transferring behavior based on their differential income structure—Taking Jiangxi province as example. China Rural Econ. 2011, 8, 89–97. [Google Scholar]
- Xu, L.; Xie, Y.; Wei, W.; Zhou, Y. Meta-analysis of econometric studies on farmer’s willingness and behaviors of collective forestland transfer in China. World For. Res. 2015, 3, 91–96. [Google Scholar]
- Amacher, G.S.; Conway, M.C.; Sullivan, J. Econometric analyses of nonindustrial forest landowners: Is there anything left to study? J. For. Econ. 2003, 9, 137–164. [Google Scholar]
- Hong, Y.Z.; Chang, H.H.; Dai, Y.W. Is deregulation of forest land use rights transactions associated with economic well-being and labor allocation of farm households? Empirical evidence in China. Land Use Policy 2018, 75, 694–701. [Google Scholar] [CrossRef]
- Zhang, H.; Kuuluvainen, J.; Yang, H.; Xie, Y.; Liu, C. The Effect of Off-Farm Employment on Forestland Transfers in China: A Simultaneous-Equation Tobit Model Estimation. Sustainability 2017, 9, 1645. [Google Scholar] [CrossRef] [Green Version]
- Weiss, G.; Lawrence, A.; Hujala, T.; Lidestav, G.; Nichiforel, L.; Nybakk, E.; Quiroga, S.; Sarvašová, Z.; Suarez, C.; Živojinović, I. Forest ownership changes in Europe: State of knowledge and conceptual foundations. For. Policy Econ. 2019, 99, 9–20. [Google Scholar] [CrossRef]
- Umaerus, P.; Högvall Nordin, M.; Lidestav, G. Do female forest owners think and act “greener”? For. Policy Econ. 2019, 99, 52–58. [Google Scholar] [CrossRef]
- Rasmussen, L.V.; Watkins, C.; Agrawal, A. Forest contributions to livelihoods in changing agriculture-forest landscapes. For. Policy Econ. 2017, 84, 1–8. [Google Scholar] [CrossRef]
- Kilgore, M.A.; MacKay, D.G. Trends in Minnesota’s Forestland Real Estate Market: Potential Implications for Forestland Uses. North. J. Appl. For. 2007, 24, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Snyder, S.A.; Kilgore, M.A.; Hudson, R.; Donnay, J. Influence of purchaser perceptions and intentions on price for forest land parcels: A hedonic pricing approach. J. For. Econ. 2008, 14, 47–72. [Google Scholar] [CrossRef]
- Ekvall, H.; Bostedt, G.; Jonsson, M. Least-cost allocation of measures to increase the amount of coarse woody debris in forest estates. J. For. Econ. 2013, 19, 267–285. [Google Scholar] [CrossRef]
- Raunikar, R.; Buongiorno, J. Ecological integrity as an economic variable: An application to forested landscapes in the southern United States. J. For. Econ. 2008, 14, 29–45. [Google Scholar] [CrossRef]
- Liira, J.; Lõhmus, K.; Tuisk, E. Old manor parks as potential habitats for forest flora in agricultural landscapes of Estonia. Biol. Conserv. 2012, 146, 144–154. [Google Scholar] [CrossRef]
- Grüebler, M.U.; Schuler, H.; Horch, P.; Spaar, R. The effectiveness of conservation measures to enhance nest survival in a meadow bird suffering from anthropogenic nest loss. Biol. Conserv. 2012, 146, 197–203. [Google Scholar] [CrossRef]
- Cuong, T.; Chinh, T.T.Q.; Zhang, Y.; Xie, Y. Economic Performance of Forest Plantations in Vietnam: Eucalyptus, Acacia mangium, and Manglietia conifera. Forests 2020, 11, 284. [Google Scholar] [CrossRef] [Green Version]
- L’Roe, J.; Naughton-Treves, L. Forest edges in western Uganda: From refuge for the poor to zone of investment. For. Policy Econ. 2017, 84, 102–111. [Google Scholar] [CrossRef]
- Gemeda, B.S.; Abebe, B.G.; Paczoski, A.; Xie, Y.; Cirella, G.T. What Motivates Speculators to Speculate? Entropy 2019, 22, 59. [Google Scholar] [CrossRef] [Green Version]
- Byg, A.; Novo, P.; Dinato, M.; Moges, A.; Tefera, T.; Balana, B.; Woldeamanuel, T.; Black, H. Trees, soils, and warthogs – Distribution of services and disservices from reforestation areas in southern Ethiopia. For. Policy Econ. 2017, 84, 112–119. [Google Scholar] [CrossRef]
- Knorn, J.; Kuemmerle, T.; Radeloff, V.C.; Szabo, A.; Mindrescu, M.; Keeton, W.S.; Abrudan, I.; Griffiths, P.; Gancz, V.; Hostert, P. Forest restitution and protected area effectiveness in post-socialist Romania. Biol. Conserv. 2012, 146, 204–212. [Google Scholar] [CrossRef]
- Popa, B.; Niță, M.D.; Hălălișan, A.F. Intentions to engage in forest law enforcement in Romania: An application of the theory of planned behavior. For. Policy Econ. 2019, 100, 33–43. [Google Scholar] [CrossRef]
- Scriban, R.E.; Nichiforel, L.; Bouriaud, L.G.; Barnoaiea, I.; Cosofret, V.C.; Barbu, C.O. Governance of the forest restitution process in Romania: An application of the DPSIR model. For. Policy Econ. 2019, 99, 59–67. [Google Scholar] [CrossRef]
- Ajzen, I.; Driver, B.L. Application of the Theory of Planned Behavior to Leisure Choice. J. Leis. Res. 1992, 24, 207–224. [Google Scholar] [CrossRef]
- Davis, G.; Phillips, P.S.; Read, A.D.; Iida, Y. Demonstrating the need for the development of internal research capacity: Understanding recycling participation using the Theory of Planned Behaviour in West Oxfordshire, UK. Resour. Conserv. Recycl. 2006, 46, 115–127. [Google Scholar] [CrossRef]
- Miliute-Plepiene, J.; Hage, O.; Plepys, A.; Reipas, A. What motivates households recycling behaviour in recycling schemes of different maturity? Lessons from Lithuania and Sweden. Resour. Conserv. Recycl. 2016, 113, 40–52. [Google Scholar] [CrossRef]
- Macey, S.M.; Brown, M.A. Residential Energy Conservation. Environ. Behav. 1983, 15, 123–141. [Google Scholar] [CrossRef]
- Johansson, P.O.; Löfgren, K.G. The Economics of Forestry and Natural Resources; Basil Blackwell Ltd.: Oxford, UK, 1985; ISBN 0631141626. [Google Scholar]
- Zhang, D.; Aboagye Owiredu, E. Land tenure, market, and the establishment of forest plantations in Ghana. For. Policy Econ. 2007, 9, 602–610. [Google Scholar] [CrossRef]
- Xu, X.; Li, C. Behavior and influencing factors of household’s forestland in flowed: Analysis on 12 villages in Zhejiang province. Cap. Mark. 2013, 6, 121–126. [Google Scholar]
- Chen, K.; Zhou, R.; Wang, C.; Wang, J. Research on factors influencing on peasant households’ willingness of forestland transfer after collective forest tenure reform. Issues For. Econ. 2009, 6, 493–498. [Google Scholar]
- Ran, L.; Lv, J. Peasant household forest land circulation behavior choice after collective ownership of forests system reform. Issues For. Econ. 2011, 2, 121–126. [Google Scholar]
- Wang, C.; He, X.; Xu, X.; Wang, S. Scale efficiency of forestland and forestland transfer among farm household: An empirical study in Zhejiang province. Rural Technol. Econ. 2010, 58–65. [Google Scholar]
- Tian, S.; Zhai, Y. Empirical analysis factors affecting behavior of farmers’ forestland circulation—Based on Liaoning province. Issues For. Econ. 2011, 2, 127–130. [Google Scholar]
- Zhang, D.; Pearse, P.H. The influence of the form of tenure on reforestation in British Columbia. For. Ecol. Manag. 1997, 98, 239–250. [Google Scholar] [CrossRef]
- Sanchez, M.E.; Morchio, G. Probing “Don’t Know” Answers: Effects on Survey Estimates and Variable Relationships. Public Opin. Q. 1992, 56, 454–474. [Google Scholar] [CrossRef]
- Groothuis, P.A.; Whitehead, J.C. Does don’t know mean no? Analysis of “don’t know” responses in dichotomous choice contingent valuation questions. Appl. Econ. 2002, 34, 1935–1940. [Google Scholar] [CrossRef] [Green Version]
- Allenby, G.M.; Arora, N.; Ginter, J.L. Incorporating Prior Knowledge into the Analysis of Conjoint Studies. J. Mark. Res. 1995, 32, 152. [Google Scholar] [CrossRef]
- Asanović, Ž. Early warning models for systematic banking crises in Montenegro. Econ. Bus. Rev. 2013, 15, 135–149. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariat Data Analysis: Exploratory Data Analysis in Business and Economics; Pearson: Upper Saddle River, NJ, USA, 2014; ISBN 9781292021904. [Google Scholar]
- Western, B.; Jackman, S. Bayesian Inference for Comparative Research. Am. Polit. Sci. Rev. 1994, 88, 412–423. [Google Scholar] [CrossRef]
- Willis, C.E.; Perlack, R.D. Multicollinearity: Effects, Symptoms, and Remedies. J. Northeast. Agric. Econ. Counc. 1978, 7, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Bayes, T. An essay toward solving a problem in the doctrine of chance. Philos. Trans. R. Soc. London 1763, 53, 370–418. [Google Scholar] [CrossRef]
- Congdon, P. Bayesian Statistical Modelling, 2nd ed.; John Wiley & Sons: Chichester, UK, 2006; ISBN 9780470018750. [Google Scholar]
- Metropolis, N.; Ulam, S. The Monte Carlo Method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef]
- Hastings, W.K. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika 1970, 57, 97. [Google Scholar] [CrossRef]
- Chib, S.; Greenberg, E. Understanding the metropolis-hastings algorithm. Am. Stat. 1995, 49, 327–335. [Google Scholar]
- Lynch, S.M. Introduction to Applied Bayesian Statistics and Estimation for Social Scientists; Springer: New York, NY, USA, 2007; ISBN 978-0387712642. [Google Scholar]
- Cemgil, T. Lecture Slides on Monte Carlo Methods. Available online: https://www.cmpe.boun.edu.tr/~cemgil/Courses/cmpe548/mc-lecture01.pdf (accessed on 12 December 2019).
- Yildirim, I. Bayesian Inference: Metropolis-Hasting Sampling. Available online: http://www.mit.edu/~ilkery/papers/MetropolisHastingsSampling.pdf (accessed on 6 September 2019).
- Gelman, A.; Carlin, J.B.B.; Stern, H.S.S.; Rubin, D.B.B. Bayesian Data Analysis, 3rd ed.; CRC Press: London, UK, 2014; ISBN 9781439840955. [Google Scholar]
- Xie, Y.; Wen, Y.; Gong, P. Rationality analysis of household transfer benefits in collective forest tenure right system reform: Take Suichuan County of Jiangxi Province as example. For. Sci. 2009, 45, 130–140. [Google Scholar]
- Wei, W.; Xie, Y. Analysis on current situation and causable factors for collective forest tenure conflicts at farm household level. For. Econ. 2016, 6, 34–38. [Google Scholar]
- Billionnet, A. Designing an optimal connected nature reserve. Appl. Math. Model. 2012, 36, 2213–2223. [Google Scholar] [CrossRef]
- Cai, Z.; Xie, Y.; Aguilar, F.X. Eco-label credibility and retailer effects on green product purchasing intentions. For. Policy Econ. 2017, 80, 200–208. [Google Scholar] [CrossRef]
- Greene, W.H. Econometric Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 2012; ISBN 9780131395381. [Google Scholar]
- Wilde, J. A simple representation of the Bera-Jarque-Lee test for probit models. Econ. Lett. 2008, 101, 119–121. [Google Scholar] [CrossRef] [Green Version]
- Yatchew, A.; Griliches, Z. Specification Error in Probit Models. Rev. Econ. Stat. 1985, 67, 134. [Google Scholar] [CrossRef]
- Zellner, A.; Rossi, P.E. Bayesian analysis of dichotomous quantal response models. J. Econom. 1984, 25, 365–393. [Google Scholar] [CrossRef]
- Çağlayan-Akay, E.; Sedefoğlu, G. What does Bayesian probit regression tell us about Turkish female-and male-headed households poverty? J. Int. Stud. 2017, 10, 46–62. [Google Scholar] [CrossRef]
- Davis, L. How to generate good profit maximization problems. J. Econ. Educ. 2014, 45, 183–190. [Google Scholar] [CrossRef]
- Crossan, K.; Lange, T. Business as Usual? Ambitions of Profit Maximization and the Theory of the Firm. J. Interdiscip. Econ. 2006, 17, 313–326. [Google Scholar] [CrossRef]
- Nentjes, A.; Schöpp, W. Discretionary profit in subsidised housing markets. Urban Stud. 2000, 37, 181–194. [Google Scholar] [CrossRef]
- Mert, M. What does a firm maximize? A simple explanation with regard to economic growth. Int. J. Eng. Bus. Manag. 2018, 10, 184797901881529. [Google Scholar] [CrossRef]
- Anderson, W.L.; Ross, R.L. The methodology of profit maximization: An Austrian alternative. Q. J. Austrian Econ. 2005, 8, 31–44. [Google Scholar] [CrossRef] [Green Version]
Factor | Variable | Assumed impact | References |
---|---|---|---|
Heterogeneity of forestland | Forestland area (area) | Ambiguous impact | [22,45,46,47] |
Forestland as inherited (inherited) | Negative impact both on leasing in and leasing out | [22,47] | |
Characteristics of the household head | Age of the head (age) | Ambiguous impact | [11,18,19,45,46,47,48] |
Educational level of the head (education) | Ambiguous impact | [18,46,47] | |
Characteristics of household | Number of laborers in a family (labor) | Positive impact on leasing in and negative impact on leasing out | [45,46,47] |
Nonfarm income (nonfarm) | Ambiguous impact on leasing in and positive impact on leasing out | [45,47,49] | |
Institutional factor | Security of forestland usage rights (security) | Positive impact | [13,44,50] |
Past experiences of leasing forestlands | Whether leased in (wea_in) | Positive impact | [40,41,42] |
Whether leased out (wea_out) | Positive impact | [40,41,42] | |
Difficulty in leasing in (easy_in) | Positive impact | [45] | |
Difficulty in leasing out (easy_out) | Positive impact | [45] | |
Whether leased in profitable (profit_in) | Positive impact | [22] | |
Whether leased out profitable (profit_out) | Positive impact | [22] |
Variable | Definition | Mean | SD † |
---|---|---|---|
Dependent variables | |||
will_in | farmers’ intention of leasing in forestland (1 = yes, 0 = otherwise) | 0.32 | 0.47 |
will_out | farmers’ intention of leasing out forestland (1 = yes, 0 = otherwise) | 0.21 | 0.41 |
Independent variables | |||
area | forestland area (ha) | 1.83 | 5.05 |
inherited | whether forestland was inherited (1 = yes, 0 = otherwise) | 0.14 | 0.35 |
age | age of household head (years) | 49.69 | 11.76 |
education | education level of household head (1 = primary school or below, 2 = middle school, 3 = high school, 4 = university or above) | 2.51 | 0.72 |
labor | number of people working in the family (people) | 2.39 | 1.11 |
nonfarm | proportion of income from nonfarm sources of total income (%) | 41.94 | 37.30 |
security | forestland usage rights (1 = yes, 0 = otherwise) | 0.44 | 0.49 |
wea_in | leased in forestland in the past five years (1 = yes, 0 = otherwise) | 0.12 | 0.32 |
easy_in | easy to lease in forestland (1 = yes, 0 = otherwise) | 0.14 | 0.35 |
profit_in | not profitable to lease in forestland (1 = yes, 0 = otherwise) | 0.25 | 0.43 |
wea_out | leased out forestland in the past five years (1 = yes, 0 = otherwise) | 0.07 | 0.25 |
easy_out | easy to lease out forestland (1 = yes, 0 = otherwise) | 0.17 | 0.38 |
profit_out | not profitable to lease out forestland (1 = yes, 0 = otherwise) | 0.18 | 0.39 |
Model 1 | Model 2 | Model 3 | Model 4 | |||||
---|---|---|---|---|---|---|---|---|
Mean | SD † | Mean | SD † | Mean | SD † | Mean | SD † | |
area | −0.003 | 0.002 | −0.002 | 0.001 | −0.002 | 0.002 | −0.003 | 0.002 |
inherited | −0.059 | 0.327 | −0.253 | 0.332 | −0.676 | 0.411 | −0.391 | 0.265 |
age | −0.479 *** | 0.009 | −0.045 *** | 0.009 | −0.045 *** | 0.011 | −0.045 *** | 0.010 |
education | −0.188 | 0136 | −0.189 | 0.162 | −0.147 | 0.197 | −0.232 | 0.152 |
labor | 0.196 ** | 0.081 | 0.229 ** | 0.088 | 0.227 *** | 0.081 | 0.216 *** | 0.073 |
nonfarm | −1.471 *** | 0.0262 | −1.449 *** | 0.294 | −1.589 *** | 0.354 | −1.575 *** | 0.361 |
security | 0.829 *** | 0.174 | 0.669 *** | 0.229 | 0.950 *** | 0.234 | 0.625 ** | 0.247 |
wea_in | 1.732 *** | 0.365 | 1.589 *** | 0.382 | ||||
esay_in | 1.304 *** | 0.316 | 1.351 *** | 0.302 | ||||
pro_in | −3.165 *** | 0.387 | −3.153 *** | 0.279 | ||||
Constant | 1.259 *** | 0.423 | 1.055 | 0.739 | 0.882 | 0.875 | 0.966 | 0.637 |
Model features | ||||||||
Log likeli. | −280.5 | −280.8 | −285.7 | −282.6 | ||||
Accept. Rate ‡ | 21.65 | 19.89 | 19.42 | 20.39 | ||||
Mean VIF | 1.13 | 1.14 | 1.15 | 1.17 |
Model 1 | Model 2 | Model 3 | Model 4 | |||||
---|---|---|---|---|---|---|---|---|
Mean | SD † | Mean | SD † | Mean | SD † | Mean | SD † | |
area | 0.002 | 0.002 | 0.001 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 |
inherited | −3.258 *** | 0.742 | −2.644 *** | 0.345 | −1.758 * | 1.005 | −1.711 *** | 0.419 |
age | −0.022 *** | −0.008 | −0.015 * | 0.009 | −0.026 ** | 0.011 | −0.026 *** | 0.008 |
education | −0.691 *** | 0.175 | −0.658 *** | 0.131 | −0.695 *** | 0.157 | −0.614 *** | 0.179 |
labor | −0.048 | 0.086 | −0.066 | 0.079 | −0.049 | 0.092 | -0.051 | 0.087 |
nonfarm | 1.579 *** | 0.354 | 1.679 *** | 0.331 | 1.082 * | 0.588 | 1.717 *** | 0.381 |
security | −0.097 | 0.251 | -0.120 | 0.219 | −0.266 | 0.239 | −0.234 | 0.267 |
wea_out | 0.837 ** | 0.421 | 0.864 * | 0.444 | ||||
easy_out | 0.468 | 0.288 | 0.237 | 0.275 | ||||
pro_out | −3.852 *** | 0.402 | −3.703 *** | 0.547 | ||||
Constant | 2.306 *** | 0.692 | 1.181 *** | 0.236 | ||||
Model features | ||||||||
Log likeli. | −246.8 | −248.4 | −240.2 | −245.6 | ||||
Accept. rate ‡ | 27.42 | 15.01 | 17.36 | 22.64 | ||||
Mean VIF | 1.12 | 1.11 | 1.15 | 1.16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Cirella, G.T.; Wen, Y.; Xie, Y. Farmers’ Intentions to Lease Forestland: Evidence from Rural China. Land 2020, 9, 78. https://doi.org/10.3390/land9030078
Li X, Cirella GT, Wen Y, Xie Y. Farmers’ Intentions to Lease Forestland: Evidence from Rural China. Land. 2020; 9(3):78. https://doi.org/10.3390/land9030078
Chicago/Turabian StyleLi, Xiaoyong, Giuseppe T. Cirella, Yali Wen, and Yi Xie. 2020. "Farmers’ Intentions to Lease Forestland: Evidence from Rural China" Land 9, no. 3: 78. https://doi.org/10.3390/land9030078
APA StyleLi, X., Cirella, G. T., Wen, Y., & Xie, Y. (2020). Farmers’ Intentions to Lease Forestland: Evidence from Rural China. Land, 9(3), 78. https://doi.org/10.3390/land9030078