Peatland Governance: The Problem of Depicting in Sustainability Governance, Regulatory Law, and Economic Instruments
Abstract
:1. Introduction: Research Issue of the Paper
2. Methodology
3. Natural Scientific Background: Peatland Ecosystems
4. Results: Problem of Depicting—Lack of Clarity in the Data
4.1. Measurability of Greenhouse Gas Reductions
4.2. Depictability of Greenhouse Gas Emissions
- CO2 emissions are the major factor in the GHG balances of drained (!) peatlands [77], and they do not differentiate between bogs and fens. Thus, measurement data from one specific peatland site can also be used to verify other peatlands [50]. Furthermore, there is a clear correlation between water and emission level: emissions decrease rapidly after rewetting and are negligibly low from water levels near the surface (see chapter 2). Whether a CO2 absorption takes place after rewetting also depends on the development of vegetation, which binds C via photosynthesis. However, the most challenging parameter to identify is the level of emissions before rewetting (baseline) in order to be able to determine the possible (potential) GHG savings. This is because the baseline can vary from peatland to peatland and even at one site on a small scale. First, the results suggest that the dynamic C stocks and the subordinate gyttjas have a strong influence on the GHG fluxes and the C balance of the individual peatlands. However, research focusing on the latter aspects is still widely missing (see, e.g., [78,79]).
- Compared to CO2 and N2O emissions, significantly more scientific data regarding CH4 emissions from peatlands is available. At higher water levels, emissions rise sharply in line with the water level [80,81,82]. As already mentioned, the presence of “fresh” biomass alongside shunt plants is a major factor for the generation of CH4 after rewetting [55]. One exception which is worth mentioning is black alder, which impacts CH4 emissions in two ways: On the one hand, the aerenchyma tissue allows for the direct exchange between the anaerobic zone and the surface. On the other hand, black alder provides for the active transport of O2 into the rhizosphere where aerobic conditions are created, leading to an oxidation of CH4 [77]. However, the fact that CH4 emissions are negligibly low at water levels below 20 cm [49] can at least facilitate the estimation of the baseline, which is consequently relatively simple to determine. The estimation of the emission behavior after rewetting, though, is problematic. Here the values measured so far diverge widely, as the emission development is influenced by many different factors on a small scale.
- N2O emissions from rewetted peatlands are negligibly low to non-existent [50]. The emission values of drained sites, meanwhile, show a major divergence. Peatlands with an average water level of fewer than 20 cm below the surface cause a large dispersion of N2O emissions, which means the reduction potential can hardly be determined and even less predicted in general terms [50]. However, N2O emissions always decrease after a successful rewetting. A disregard of this decrease in the depiction of the GHG emissions reduction potential, therefore, leads to incorrect results since N2O emissions can reach considerable values [49]. Particularly high emissions were measured with highly fluctuating groundwater levels [27]. This underlines once again that rewetting with the intention of reducing emissions requires good groundwater management. In contrast, a clear link between fertilization and N2O emissions is not always apparent. However, N2O emissions are largely dependent on the level of nitrate concentration in the soil water, which can be increased by non-site-adapted fertilization, respectively, overfertilization [83]. So far, there are no appropriate proxies to reliably depict the N2O flows. Rather, neglecting the N2O emissions in the baseline assessments determines their conservativeness.
4.3. Baseline Problem
5. Results: Policy Instruments of Peatland Governance
5.1. Empirical Status Quo of Agricultural and Environmental Law Regarding Peatland Conservation—Limited Focussing and Failure of Existing Command-and-Control Options and Subsidy Schemes
5.2. Empirical Status Quo of Climate Economic Instruments for Peatland Conservation
6. Discussion and Concluding Remarks: Possible Governance Problems and Possible Policy Options to Overcome Them
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Joosten, H.; Sirin, A.; Couwenberg, J.; Laine, J.; Smith, P. The role of peatlands in climate regulation. In Peatland Restoration and Ecosystem Services; Ecological Reviews; Bonn, A., Allott, T., Evans, M., Joosten, H., Stoneman, R., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 63–76. [Google Scholar]
- Niedermair, M.; Plattner, G.; Egger, G.; Essl, F.; Kohler, B.; Zika, M. Moore Im Klimawandel: Studie Des WWF Österreich; Umweltbundesamt GmbH: Vienna, Austria, 2011. [Google Scholar]
- Schägner, J.P. Kosteneffektiver Klimaschutz durch Moorschutz—Moorrenaturierung als Klimaschutzmaßnahme. Ökologische Wirtsch. 2009, 1, 28–29. [Google Scholar]
- Trepel, M. Zur Bedeutung von Mooren in der Klimadebatte: Jahresbericht des Landesamtes für Natur und Umwelt Des Landes Schleswig-Holstein; Landesamtes für Natur und Umwelt des Landes Schleswig-Holstein: Flintbek, Germany, 2008. [Google Scholar]
- Zak, D.; Augustin, J.; Trepel, M.; Gelbrecht, J. Strategien und Konfliktvermeidung bei der Restaurierung von Niedermooren unter Gewässer-, Klima- und Naturschutzaspekten, dargestellt am Beispiel des nordostdeutschen Tieflandes. Telma 2011, 4, 133–150. [Google Scholar]
- IPCC. Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 873–875. [Google Scholar]
- Wolters, S.; Tänzler, D.; Theiler, L.; Drösler, M. Entwicklung von Konzepten für einen Nationalen Klimaschutzfonds zur Renaturierung von Mooren; Umweltbundesamt: Dessau-Roßlau, Germany, 2013. [Google Scholar]
- Couwenberg, J.; Joosten, H.; von Unger, M.; Emmer, I. Peatlands, Forests and the Climate Architecture: Setting Incentives through Markets and Enhanced Accounting; Umweltbundesamt: Dessau-Roßlau, Germany, 2016. [Google Scholar]
- Ekardt, F.; Wieding, J.; Garske, B.; Stubenrauch, J. Agriculture-related climate policies—Law and governance issues on European and global level. Carbon Clim. Law Rev. 2018, 4, 316. [Google Scholar] [CrossRef]
- Höper, H. Wasserregulierende Maßnahmen auf landwirtschaftlich genutzten Mooren. Presented at the Moore im Kontext der Ramsar-Konvention - Schutz und nachhaltige Nutzung, Bonn, Germany, 23 May 2018. [Google Scholar]
- Joosten, H. The Paris agreement and the role of Peatlands. Presented at the Future of the Voluntary Carbon Markets in the Light of the Paris Agreement: Perspectives for Soil Carbon Projects, Bonn, Germany, 3 May 2018. [Google Scholar]
- Augustin, J. Emission, Aufnahme und Klimarelevanz von Spurengasen. In Landschaftsökologische Moorkunde; Succow, M., Joosten, H., Eds.; Schweizerbart Science Publishers: Stuttgart, Germany, 2001; pp. 28–36. [Google Scholar]
- Drösler, M.; Freibauer, A.; Adelmann, W.; Augustin, J.; Bergmann, L.; Beyer, C.; Chojnicki, B.; Förster, C.; Giebels, M.; Görlitz, S.; et al. Klimaschutz durch Moorschutz in der Praxis: Ergebnisse aus dem BMBF-Verbundprojekt Klimaschutz—Moornutzungsstrategien 2006–2010; Von Thünen-Institut: Braunschweig, Germany, 2011. [Google Scholar]
- Joosten, H. Moorschutz in Europa: Restauration und Klimarelevanz. In Moor in der Regionalentwicklung; Wagenfeld; Ströhlen; BUND Landesverband Niedersachsen, Ed.; BUND Niedersachsen: Hannover, Germany, 2006; pp. 35–42. [Google Scholar]
- Joosten, H.; Couwenberg, J. Bilanzen zum Moorverlust: Das Beispiel Europa. In Landschaftsökologische Moorkunde; Succow, M., Joosten, H., Eds.; Schweizerbart Science Publishers: Stuttgart, Germany, 2001; pp. 406–408. [Google Scholar]
- Wichtmann, W. Aktuelle Forschungs- und Umsetzungsprojekte in Deutschland: Paludikulturen. Presented at the Moore im Kontext der Ramsar-Konvention - Schutz und nachhaltige Nutzung, Bonn, Germany, 23 May 2018. [Google Scholar]
- United Nations. Adoption of the Paris Agreement (PA); United Nations: New York, NY, USA, 2015. [Google Scholar]
- Ekardt, F.; Wieding, J.; Zorn, A. Paris agreement, precautionary principle and human rights: Zero emissions in two decades? Sustainability 2018, 10, 2812. [Google Scholar] [CrossRef] [Green Version]
- Rockström, J.; Gaffney, O.; Rogelj, J.; Meinshausen, M.; Nakicenovic, N.; Schellnhuber, H.J. A roadmap for rapid decarbonization. Science 2017, 1269–1271. [Google Scholar] [CrossRef] [Green Version]
- Höhne, N.; Kuramochi, T.; Sterl, S.; Röschel, L. Was bedeutet das Pariser Abkommen für den Klimaschutz in Deutschland? Kurzstudie Von NewClimate Institute im Auftrag von Greenpeace; NewClimate—Institute for Climate Policy and Global Sustainability gGmbH: Berlin, Germany, 2016. [Google Scholar]
- van Vuuren, D.P.; Deetman, S.; van Vliet, J.; van den Berg, M.; van Ruijven, B.J.; Koelbl, B. The role of negative CO2 emissions for reaching 2 °C—Insights from integrated assessment modelling. Clim. Chang. 2013, 118, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Gasser, T.; Guivarch, C.; Tachiiri, K.; Jones, C.D.; Ciais, P. Negative emissions physically needed to keep global warming below 2 °C. Nat. Commun. 2015, 6, 7958. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Davis, S.J.; Creutzig, F.; Fuss, S.; Minx, J.; Gabrielle, B.; Kato, E.; Jackson, R.B.; Cowie, A.; Kriegler, E.; et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 2016, 6, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Ekardt, F. Sustainability. Transformation, Governance, Ethics, Law; Springer: Berlin, Germany, 2019. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC, Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2015. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis. A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Paul, S.; Alewell, C. Moorregeneration als Klimaschutzmaßnahme: Eine Recherche zur neuen Kyoto-Aktivität; Bundesamt für Umwelt: Basel, Switzerland, 2013. [Google Scholar]
- United Nations. Convention on Biological Diversity (CBD); United Nations: New York, NY, USA, 1992. [Google Scholar]
- Succow, M. Ökologische (phytozoenologische) Moortypen. In Landschaftsökologische Moorkunde; Succow, M., Joosten, H., Eds.; Schweizerbart Science Publishers: Stuttgart, Germany, 2001; pp. 229–234. [Google Scholar]
- Landgraf, L. Bedeutung der Moore für den Landschafts- und Stoffhaushalt. Telma 2000, 30, 146–148. [Google Scholar]
- Ssymank, A.; Ullrich, K.; Vischer-Leopold, M.; Belting, S.; Bernotat, D. Handlungsleitfaden, Moorschutz und Natura 2000“ Für die Durchführung von Moorrevitalisierungsprojekten; Bundesamt für Naturschutz: Bonn, Germany, 2015. [Google Scholar]
- Garske, B. Ordnungsrechtliche und ökonomische Instrumente der Phosphor-Governance und ihre Bezüge zu Böden, Gewässern, Biodiversität und Klima; Metropolis-Verlag: Marburg, Germany, 2020. [Google Scholar]
- Hennig, B. Nachhaltige Landnutzung und Bioenergie. Ambivalenzen, Governance, Rechtsfragen; Metropolis-Verlag: Marburg, Germany, 2016. [Google Scholar]
- Stubenrauch, J. Phosphor-Governance in ländervergleichender Perspektive—Deutschland, Costa Rica, Nicaragua: Ein Beitrag zur Nachhaltigkeits- und Bodenschutzpolitik; Metropolis-Verlag: Marburg, Germany, 2019. [Google Scholar]
- Peters, G.P.; Minx, J.C.; Weber, C.L.; Edenhofer, O. Growth in emission transfers via international trade from 1990 to 2008. Proc. Natl. Acad. Sci. USA 2011, 108, 8903–8908. [Google Scholar] [CrossRef] [Green Version]
- Succow, M.; Joosten, H. Landschaftsökologische Moorkunde, 2nd ed.; Schweizerbart Science Publishers: Stuttgart, Germany, 2001. [Google Scholar]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories: Agriculture, Forestry and Other Land Use, 4th ed.; Institute for Global Environmental Strategies: Hayama, Japan, 2006. [Google Scholar]
- Joosten, H.; Clarke, D. Wise Use of Mires and Peatlands: Background and Principles Including a Framework for Decision-Making; International Peat Society and International Mire Conservation Group: Greifswald, Germany, 2002. [Google Scholar]
- Koppisch, D. Prozesse auf Moorstandorten (topische Betrachtung): Torfbildung. In Landschaftsökologische Moorkunde; Succow, M., Joosten, H., Eds.; Schweizerbart Science Publishers: Stuttgart, Germany, 2001; pp. 8–17. [Google Scholar]
- Juranski, G.; Günther, A.; Huth, V.; Couwenberg, J.; Glatzel, S. Treibhausgasemissionen. In Paludikultur—Bewirtschaftung nasser Moore; Wichtmann, W., Schröder, C., Joosten, H., Eds.; Schweizerbart: Stuttgart, Germany, 2016; pp. 79–94. [Google Scholar]
- Timmerman, T.; Joosten, H.; Succow, M. Restaurierung von Mooren. In Renaturierung von Ökosystemen in Mitteleuropa; Zerbe, S., Wiegleb, G., Eds.; Spektrum Akademischer Verlag: Heidelberg, Germany, 2009; pp. 55–93. [Google Scholar]
- Gerken, B. Moore und Sümpfe: Bedrohte Reste der Urlandschaft; Rombach: Freiburg im Breisgau, Germany, 1983. [Google Scholar]
- Dierßen, K.; Dierßen, B. Moore: 16 Tabellen; Ökologie Botanik; Ulmer: Stuttgart (Hohenheim), Germany, 2008. [Google Scholar]
- Parish, S.; Sirin, A.; Charmann, D.J.; Joosten, H.; Minayeva, T.; Silvius, M.; Stringer, L. Assement on Peatlands, Bioderversity and Climate Change, 2nd ed.; Main Report; Wetlands International: Wageningen, The Netherlands, 2008. [Google Scholar]
- Joosten, H.; Tanneberger, F.; Moen, A. Mires and peatlands of Europe: Status, distribution and conservation; Schweizerbart Science Publishers: Stuttgart, Germany, 2017. [Google Scholar]
- Frolking, S.; Talbot, J.; Jones, M.C.; Treat, C.C.; Kauffman, J.B.; Tuittila, E.-S.; Roulet, N. Peatlands in the Earth’s 21st century climate system. Environ. Rev. 2011, 19, 371–396. [Google Scholar] [CrossRef]
- Schwill, S. Wirkung von Wiedervernässung auf degradierten Niedermoorstandorten: Eine Literaturecherche. In Landesamt Mecklenburg Vorpommern (Hrsg.). Stoffausträge aus wiedervernässten Niedermooren; Schriftenreihe des Landesamts für Umwelt, Naturschutz und Geologie; Landesamt für Umwelt, Naturschutz und Geologie: Güstrow, Germany, 2003; Volume 2, pp. 10–27. [Google Scholar]
- Yu, Z.; Beilman, D.W.; Frolking, S.; MacDonald, G.M.; Roulet, N.T.; Camill, P.; Charmann, D.J. Peatlands and their role in the global carbon cycle. Eos 2011, 92, 97–108. [Google Scholar] [CrossRef]
- Couwenberg, J.; Thiele, A.; Tanneberger, F.; Augustin, J.; Bärisch, S.; Dubovik, D.; Liashchynskaya, N.; Michaelis, D.; Minke, M.; Skuratovich, A.; et al. Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 2011, 674, 67–89. [Google Scholar] [CrossRef]
- Couwenberg, J.; Augustin, J.; Michaelis, D.; Wichtmann, W.; Joosten, H. Entwicklung von Grundsätzen für eine Bewertung von Niedermooren hinsichtlich ihrer Klimarelevanz: Endbericht; Ministerium für Landwirtschaft, Umwelt und Verbraucherschutz Mecklenburg-Vorpommern, Institut für dauerhafte umweltgerechte Entwicklung von Naturräumen der Erde e.V.; Institut für Botanik und Landschaftsökologie Ernst Moritz Arndt Universität Greifswald: Greifswald, Germany, 2008. [Google Scholar]
- Köbbing, J.F.; Groth, M.; Oheimb, G. Klimaschutz durch Moorrenaturierung: Ansätze zur ökonomischen Bewertung; Ibidem-Verlag: Stuttgart, Germany, 2012. [Google Scholar]
- Tanneberger, F.; Wichtmann, W. Carbon Credits from peatland rewetting: Climate—biodiversity—land use. Science, policy, implementation and recommendations of a pilot project in Belarus; Schweizerbart: Stuttgart, Germany, 2011. [Google Scholar]
- Couwenberg, J. Methane emissions from peat soils: Facts, MRV-ability, emission factors; Wetlands International: Bonn, Germany, 2009. [Google Scholar]
- Lai, D.Y.F. Methane dynamics in northern peatlands: A review. Pedosphere 2009, 19, 409–421. [Google Scholar] [CrossRef]
- Wahlen, C. Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ. Eng. Sci. 2005, 22, 73–92. [Google Scholar] [CrossRef]
- Frolking, S.; Roulet, N.T. Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Glob. Chang. Biol. 2007, 13, 1079–1088. [Google Scholar] [CrossRef]
- Petrescu, A.M.R.; Lohila, A.; Tuovinen, J.-P.; Baldocchi, D.D.; Desai, A.R.; Roulet, N.T.; Vesala, T.; Dolman, A.J.; Oechel, W.C.; Marcolla, B.; et al. The uncertain climate footprint of wetlands under human pressure. Proc. Natl. Acad. Sci. USA 2015, 112, 4594–4599. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change and Land. An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Summary for Policymakers. Approved Draft; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Couwenberg, J.; Augustin, J.; Joosten, H. Emission reductions from rewetting of peatlands: towards a field guide for the assessment of greenhouse gas emissions from Central European peatlands; Duene and Greifswald University: Greifswald, Germany, 2008. [Google Scholar]
- Augustin, J.; Couwenberg, J.; Minke, M. Peatlands and greenhouse gases. In Carbon credits from peatland rewetting; Tanneberger, F., Wichtmann, W., Eds.; Schweizerbart: Stuttgart, Germany, 2011; pp. 13–42. [Google Scholar]
- Umweltbundesamt, Nationaler Inventarbericht. Berichterstattung unter der Klimarahmenkonvention der Vereinten Nationen und dem Kyoto-Protokoll 2017: Nationaler Inventarbericht zum deutschen Treibhausgasinventar 1990–2015; Umweltbundesamt: Dessau-Roßlau, Germany, 2017. [Google Scholar]
- Gaudig, G.; Oehmke, C.; Abel, S.; Schröder, C. Moornutzung neu gedacht: Paludikultur bringt zahlreiche Vorteile. ANLiegen Nat. 2014, 36, 67–74. [Google Scholar]
- Höper, H. Freisetzung von Treibhausgasen aus deutschen Mooren. Telma 2007, 4, 85–116. [Google Scholar]
- IPCC. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands: Methodological Guidance on Lands with Wet and Drained Soils, and Constructed Wetlands for Wastewater Treatment; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014. [Google Scholar]
- Drösler, M.; Adelmann, W.; Augustin, J.; Bergmann, L.; Beyer, C.; Chojnicki, B.; Förster, C.; Freibauer, A.; Giebels, M.; Görlitz, S.; et al. Klimaschutz durch Moorschutz: Schlussbericht des BMBF-Projektes: Klimaschutz—Moornutzungsstrategien 2006–2010; Thünen-Institut: Braunschweig, Germany, 2013. [Google Scholar]
- Petersen, S.O.; Hoffmann, C.C.; Schäfer, C.-M.; Blicher-Mathiesen, G.; Elsgaard, L.; Kristensen, K.; Larsen, S.E.; Torp, S.B.; Greve, M.H. Annual emissions of CH4 and N2O, and ecosystem respiration, from eight organic soils in western Denmark managed by agriculture. Biogeosciences 2012, 9, 403–422. [Google Scholar] [CrossRef] [Green Version]
- Augustin, J.; Merbach, W.; Steffens, L.; Snelinski, B. Nitrous oxide fluxes of disturbed minerotrophic peatlands. Agribiol. Res. 1998, 51, 47–57. [Google Scholar]
- Eickenscheidt, T.; Heinichen, J.; Drösler, M. The greenhouse gas balance of a drained fen peatland is mainly controlled by land-use rather than soil organic carbon content. Biogeosciences 2015, 12, 5161–5184. [Google Scholar] [CrossRef] [Green Version]
- Jensen, R.; Couwenberg, J.; Trepel, M. Bilanzierung der Klimawirkung von Moorböden in Schleswig-Holstein. Telma 2010, 40, 215–228. [Google Scholar]
- Regina, K.; Nykänen, H.; Silvola, J.; Martikainen, P.J. Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity. Biogeocemistry 1996, 25, 401–418. [Google Scholar] [CrossRef]
- Drösler, M.; Augustin, J.; Bergmann, L.; Förster, C.; Fuchs, D.; Hermann, J.-M.; Kantelhardt, J.; Kapfer, A.; Krüger, G.-M.; Schaller, L.; et al. Beitrag ausgewählter Schutzgebiete zum Klimaschutz und dessen monetäre Bewertung: Abschlussbericht des gleichnamigen F+E-Vorhabens (FKZ 3509 85 0500); BfN-Skripten; BfN Bundesamt für Naturschutz: Bonn, Germany, 2012. [Google Scholar]
- Hahn-Schöfl, M.; Zak, D.; Minke, M.; Gelbrecht, J.; Augustin, J.; Freibauer, A. Organic sediment formed during inundation of a degraded fen grassland emits large fluxes of CH4 and CO2. Biogeosciences 2011, 8, 1539–1550. [Google Scholar] [CrossRef] [Green Version]
- Stubenrauch, J.; Garske, B.; Ekardt, F. Sustainable land use, soil protection and phosphorus management from a cross-national perspective. Sustainability 2018, 10, 1988. [Google Scholar] [CrossRef] [Green Version]
- Zak, D.; Meyer, N.; Cabezas, A.; Gelbrecht, J.; Mauerberger, R.; Tiemeyer, B.; Wagner, C.; McInnes, R. Topsoil removal to minimize internal eutrophication in rewetted peatlands and to protect downstream systems against phosphorus pollution: A case study from NE Germany. Ecol. Eng. 2017, 103, 488–496. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Bell, M.J.; Smith, J.U.; Richards, M.; Nilsson, M.B.; Peichl, M.; Löfvenius, M.O.; Lund, M.; Helfter, C.; et al. Simulation of CO2 and Attribution Analysis at Six European Peatland Sites Using the ECOSSE Model. Water Air Soil Pollut. 2014, 225, 161–175. [Google Scholar] [CrossRef]
- Koszinski, S.; Miller, B.A.; Hierold, W.; Haelbich, H.; Sommer, M. Spatial modeling of organic carbon in degraded peatland soils of northeast Germany. Soil Sci. Soc. Am. J. 2015, 79, 1496. [Google Scholar] [CrossRef]
- Huth, V.; Hoffman, M.; Bereswill, S.; Popova, Y.; Augustin, J. The climate warming effect of a fen peat meadow with fluctuating water table is reduced by young alder trees. Mires Peat 2018, 1–8. [Google Scholar] [CrossRef]
- Pohl, M.; Hoffmann, M.; Hagemann, U.; Giebels, M.; Albiac Borraz, E.; Sommer, M.; Augustin, J. Dynamic C and N Stocks—Key factors controlling the C gas exchange of maize in a heterogenous peatland. Biogeosci. Discuss. 2014, 11, 16135–16176. [Google Scholar] [CrossRef]
- Zeitz, J. Aktuelle Forschungs- und Umsetzungsprojekte in Deutschland: Notwendiges Wissen über Moorböden für die Bewertung von nachhaltiger Nutzung und/oder Renaturierung. Presented at the Moore im Kontext der Ramsar-Konvention—Schutz und nachhaltige Nutzung, Bonn, Germany, 23 May 2018. [Google Scholar]
- Wilson, D.; Alm, J.; Laine, J.; Byrne, K.A.; Farrell, E.P.; Tuittila, E.-S. Rewetting of Cutaway Peatlands: Are We Re-Creating Hot Spots of Methane Emissions? Restor. Ecol. 2009, 17, 796–806. [Google Scholar] [CrossRef]
- Strack, M.; Zuback, Y.C.A. Annual carbon balance of a peatland 10 yr following restoration. Biogeosciences 2013, 10, 2885–2896. [Google Scholar] [CrossRef] [Green Version]
- Wilson, D.; Farrell, C.A.; Fallon, D.; Moser, G.; Müller, C.; Renou-Wilson, F. Multiyear greenhouse gas balances at a rewetted temperate peatland. Glob. Chang. Biol. 2016, 22, 4080–4095. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.S.; Larsen, K.S.; Emmett, B.; Estiarte, M.; Field, C.; Leith, I.D.; Lund, M.; Meijide, A.; Mills, R.T.E.; Niinemets, Ü.; et al. Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands—Responses to climatic and environmental changes. Biogeosciences 2012, 9, 3739–3755. [Google Scholar] [CrossRef] [Green Version]
- Tiemeyer, B.; Bechtold, M.; Belting, S. Moorschutz in Deutschland: Optimierung des Moormanagements in Hinblick auf den Schutz der Biodiversität und der Ökosystemleistungen; Bewertungsinstrumente und Erhebung von Indikatoren; Bundesamt für Naturschutz; BfN-Skripten: Bonn, Germany, 2017. [Google Scholar]
- Bechtold, M.; Schlaffer, S.; Tiemeyer, B.; de Lannoy, G. Inferring water table depth dynamics from ENVISAT-ASAR C-Band Backscatter over a Range of Peatlands from Deeply-Drained to Natural Conditions. Remote Sens. 2018, 10, 536. [Google Scholar] [CrossRef] [Green Version]
- Tiemeyer, B.; Freibauer, A.; Drösler, M.; Albiac-Borraz, J.; Augustin, J.; Bechtold, M.; Beetz, S.; Benrieder, M.; Beyer, C.; Eberl, J.; et al. Klimarelevanz von Mooren und Anmooren in Deutschland: Ergebnisse aus dem Verbundprojekt, “Organische Böden in der Emissionsberichterstattung”; Thünen Working Paper, No. 15; Thünen-Institut: Braunschweig, Germany, 2013. [Google Scholar]
- Koska, I.; Succow, M.; Clausnitzer, U. Vegetation als Komponente landschaftsökologischer Naturraumkennzeichnung. In Landschaftsökologische Moorkunde; Succow, M., Joosten, H., Eds.; Schweizerbart Science Publishers: Stuttgart, Germany, 2001; pp. 112–127. [Google Scholar]
- Gray, A.; Levy, P.E.; Cooper, M.D.A.; Jones, T.; Gaiawyn, J.; Leeson, S.R.; Ward, S.E.; Dinsmore, K.J.; Drewer, J.; Sheppard, L.J.; et al. Methane indicator values for peatlands: A comparison of species and functional groups. Glob. Chang. Biol. 2013, 19, 1141–1150. [Google Scholar] [CrossRef] [Green Version]
- Comas, X.; Terry, N.; Slater, L.; Warren, M.; Kolka, R.; Kristiyono, A.; Sudiana, N.; Nurjaman, D.; Darusman, T. Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): Implications for carbon stock estimates and peat soil characterization. Biogeosciences 2015, 12, 2995–3007. [Google Scholar] [CrossRef] [Green Version]
- Gumbricht, T.; Roman-Cuesta, R.M.; Verchot, L.; Herold, M.; Wittmann, F.; Householder, E.; Herold, N.; Murdiyarso, D. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob. Chang. Biol. 2017, 23, 3581–3599. [Google Scholar] [CrossRef] [Green Version]
- Freibauer, A.; Röder, N.; Tiemeyer, B. Ansätze für die Definition für Gebietskulissen für den GLÖZ-Standard “Schutz von Feuchtgebieten und kohlenstoffreichen Böden einschließlich eines Erstumbruchverbots”: Arbeitsberichte aus dem vTI-Institut für agrarrelevante Klimaforschung; Thünen-Institut: Braunschweig, Germany, 2012. [Google Scholar]
- Tanneberger, F.; Tegetmeyer, C.; Busse, S.; Barthelmes, A.; Schumka, S.; Moles Marine, A.; Steiner, G.M.; Essl, F.; Etzold, J.; Mendes, C.; et al. The peatland map of Europe. Mires Peat 2017, 19, 1–17. [Google Scholar]
- Dargie, G.C.; Lewis, S.L.; Lawson, I.T.; Mitchard, E.T.A.; Page, S.E.; Bocko, Y.E.; Ifo, S.A. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 2017, 542, 86–90. [Google Scholar] [CrossRef] [PubMed]
- LABO Bund/Länder-Arbeitsgemeinschaft Bodenschutz. Bedeutung und Schutz von Moorböden—Hintergrundpapier; Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein: Kiel, Germany, 2017. [Google Scholar]
- Osterburg, B.; Tiemeyer, B.; Röder, N. Hintergrundpapier zum Moorbodenschutz und zur torfschonenden und -erhaltenden Moorbodennutzung als Beitrag zum Klimaschutz; Thünen-Institut: Braunschweig, Germany, 2018. [Google Scholar]
- Garske, B.; Stubenrauch, J.; Ekardt, F. Sustainable phosphorus management in European agricultural and environmental law. RECIEL 2020, 1–11. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Convention on Wetlands of International Importance especially as Waterfowl Habitat (Ramsar Convention); United Nations: Ramsar, Iran, 1971. [Google Scholar]
- Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU). Handbuch der Ramsar-Konvention. Ein Leitfaden über Feuchtgebiete von internationaler Bedeutung, 4th ed.; BMU Hausdruckerei: Berlin, Germany, 2010. [Google Scholar]
- Steiner, G.M. Moorschutz im Rahmen der Ramsar-Konvention. Presented at Moore im Kontext der Ramsar-Konvention—Schutz und Nachhaltige Nutzung, Bonn, Germany, 23 May 2018. [Google Scholar]
- Council of the European Union. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora, OJ L 206/7, 22.7.1992; Council of the European Union: Brussels, Belgium, 1992. [Google Scholar]
- Peters, J.; von Unger, M. Peatlands in the EU regulatory Environment: Survey with case studies on Poland and Estonia; BfN-Skripten; Bundesamt für Naturschutz: Bonn, Germany, 2017. [Google Scholar]
- Härtel, I. Düngung im Agrar- und Umweltrecht: EG-Recht, deutsches, niederländisches und flämisches Recht; Schriften zum Umweltrecht; Duncker & Humblot: Berlin, Germany, 2002. [Google Scholar]
- Douhaire, C. Rechtsfragen der Düngung: Eine Steuerungs- und Rechtswissenschaftliche Analyse vor dem Hintergrund unions- und völkerrechtlicher Verpflichtungen und politischer Zielsetzungen zum Umwelt- und Ressourcenschutz; Schriften zum Umweltrecht; Duncker & Humblot: Berlin, Germany, 2019. [Google Scholar]
- Federal Law Gazette, I. Federal Nature Conservation Act (Gesetz über Naturschutz und Landschaftspflege, BNatSchG); Federal Law Gazette I: Berlin, Germany, 2009; p. 2542.
- Federal Law Gazette, I. Federal Soil Conservation Act (Gesetz zum Schutz vor schädlichen Bodenveränderungen und zur Sanierung von Altlasten, BBodSchG); Federal Law Gazette I: Berlin, Germany, 1998; p. 502.
- Umweltbundesamt. Rechtliche und andere Instrumente für vermehrten Umweltschutz in der Landwirtschaft; Umweltbundesamt: Dessau-Roßlau, Germany, 2014. [Google Scholar]
- Möckel, S. Landwirtschaft und naturschutzrechtliche Eingriffsgenehmigung. Anwendungsbereich und Verfassungsmäßigkeit der Regelvermutung sowie Erforderlichkeit pauschaler Kompensationspflichten. Nat. Recht 2012, 34, 225–232. [Google Scholar]
- Möckel, S. Novellierungsbedarf beim BNatSchG aus ökologischer und europarechtlicher Sicht. Zeitschrift für Umweltrecht 2017, 28, 195–205. [Google Scholar]
- Federal Law Gazette, I. Water Resources Act (Wasserhaushaltsgesetz, WHG); Federal Law Gazette I: Berlin, Germany, 2009; p. 2585.
- Möckel, S.; Köck, W.; Rutz, C.; Schramek, J. Rechtliche und andere Instrumente für vermehrten Umweltschutz in der Landwirtschaft; Umweltbundesamt: Dessau-Roßlau, Germany, 2013; p. 118. [Google Scholar]
- Garske, B.; Douhaire, C.; Ekardt, F. Ordnungsrechtliche Instrumente der Phosphor-Governance. Nat. Recht 2018, 40, 73–81. [Google Scholar]
- Ratamäki, O.; Jokinen, P.; Albrecht, E.; Belinskij, A. Framing the peat: The political ecology of Finnish mire policies and law. Mires Peat 2019, 24, 1–12. [Google Scholar] [CrossRef]
- Garske, B.; Hoffmann, K. Die Gemeinsame Agrarpolitik nach der Reform 2013: Endlich nachhaltig? In Beiträge zum Europa- und Völkerrecht; Institut für Wirtschaftsrecht, Forschungsstelle für Transnationales Wirtschaftsrecht, Juristische und Wirtschaftswissenschaftliche Fakultät, Martin-Luther-Universität Halle-Wittenberg: Halle, Germany, 2016. [Google Scholar]
- European Parliament; Council of the European Union. Regulation (EU) No 1306/2013 of the European Parliament and of the Council of 17 December 2013 on the financing, management and monitoring of the common agricultural policy and repealing Council Regulations (EEC) No 352/78, (EC) No 165/94, (EC) No 2799/98, (EC) No 814/2000, (EC) No 1290/2005 and (EC) No 485/2008, OJ L 347/549, 20.12.2013; European Parliament; Council of the European Union: Brussels, Belgium, 2013. [Google Scholar]
- European Parliament; Council of the European Union. Regulation (EU) No 1307/2013 of the European Parliament and of the Council of 17 December 2013 establishing rules for direct payments to farmers under support schemes within the framework of the common agricultural policy and repealing Council Regulation (EC) No 637/2008 and Council Regulation (EC) No 73/2009, OJ L 347/608, 20.12.2013; European Parliament; Council of the European Union: Brussels, Belgium, 2013. [Google Scholar]
- Deutscher Bundestag. Stellungnahme Arbeitsgemeinschaft Bäuerliche Landwirtschaft e.V. (AbL) Für Die 8. Sitzung des Ausschusses für Ernährung und Landwirtschaft uur öffentlichen Anhörung zum Gesetzentwurf der Bundesregierung “Entwurf eines Gesetzes zur Durchführung der Direktzahlungen an Inhaber landwirtschaftlicher Betriebe im Rahmen von Stützungsregelungen der Gemeinsamen Agrarpolitik (Direktzahlungen-Durchführungsgesetz—DirektZahlDurchfG)” Ausschussdrucksache 18(10)052-G; Deutscher Bundestag: Berlin, Germany, 2014. [Google Scholar]
- EU Commission. Proposal for a regulation of the European Parliament and of the Council establishing rules on support for strategic plans to be drawn up by Member States under the Common agricultural policy (CAP Strategic Plans) and financed by the European Agricultural Guarantee Fund (EAGF) and by the European Agricultural Fund for Rural Development (EAFRD) and repealing Regulation (EU) No 1305/2013 of the European Parliament and of the Council and Regulation (EU) No 1307/2013 of the European Parliament and of the Council, COM(2018) 392 Final, 1 June 2018; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Pabst, H.; Ahtermann, B.; Langendorf, U.; Horlitz, T.; Schramek, J. Kurzfassungen der Agrarumwelt- und Naturschutzprogramme; BfN, Bundesamt für Naturschutz: Bonn, Germany, 2018. [Google Scholar]
- Naturschutzbund Deutschland e.V. (NABU). Leitfaden zur Naturschutzfinanzierung in der EU-Förderperiode 2014–2020, 2nd ed.; Naturschutzbund Deutschland (NABU) e.V.: Berlin, Germany, 2016. [Google Scholar]
- Jasper, U. Eine Reform mit großen Möglichkeiten. EU-Agrarpolitik kann auf nationaler Ebene erheblich gerechter und auch grüner werden. In Der kritische Agrarbericht 2014; AgrarBünbnise, V., Ed.; ABL Verlag: Berlin, Germany, 2014. [Google Scholar]
- Bund-Länder-Arbeitsgemeinschaft Naturschutz, Landschaftspflege und Erholung. Potentiale und Ziele zum Moor- und Klimaschutz; Bund-Länder-Arbeitsgemeinschaft Naturschutz, Lanschaftspflege und Erholung: Saarbrücken, Germany, 2012. [Google Scholar]
- Salomaa, A.; Paloniemi, R.; Ekross, A. The case of conflicting Finnish peatland management—Skewed representation of nature, participation and policy instruments. J. Environ. Manag. 2018, 233, 694–702. [Google Scholar] [CrossRef]
- Albrecht, E.; Ratamäki, O. Effective arguments for ecosystem services in biodiversity conservation—A case study on Finnish peatland conservation. Ecosyst. Serv. 2016, 22, 41–50. [Google Scholar] [CrossRef]
- Van Hecken, G.; Bastiaensen, J. Payments for ecosystem services in Nicaragua: Do market-based approaches work? Dev. Chang. 2010, 41, 421–444. [Google Scholar] [CrossRef]
- European Parliament; Council of the European Union. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Eepealing Directives 2001/77/EC and 2003/30/EC (Renewable Energy Directive), OJ L 140/16, 5.6.2009; European Parliament; Council of the European Union: Brussels, Belgium, 2009. [Google Scholar]
- European Parliament; Council of the European Union. Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the Promotion of the Use of Biofuels or Other Renewable Fuels for Transport (Biofuel Directive), OJ L 123/42, 17.5.2003; European Parliament; Council of the European Union: Brussels, Belgium, 2003. [Google Scholar]
- Schulz, C.; Martín Brañas, M.; Nuñez Pérez, C.; Del Aguila Villacorta, M.; Laurie, N.; Lawson, I.T.; Roucoux, K.H. Uses, cultural significance, and management of peatlands in the Peruvian Amazon: Implications for conservation. Biol. Conserv. 2019, 235, 189–198. [Google Scholar] [CrossRef]
- Dohong, A.; Aziz, A.A.; Dargusch, P. A review of the drivers of tropical peatland degradation in South-East Asia. Land Use Policy 2017, 96, 349–360. [Google Scholar] [CrossRef]
- Uda, S.K.; Hein, L.; Suarga, E. Towards sustainable management of Indonesian tropical peatlands. Wetl. Ecol. Manag. 2017, 25, 683–701. [Google Scholar] [CrossRef] [Green Version]
- Bastos Lima, M.G.; Gupta, J. The policy context of biofuels: A case of non-governance at the global level? Glob. Environ. Politics 2013, 13, 46–64. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, R.; Ifo, A.; Cole, L.; Montanarella, L.; Nuutinen, M. Peatlands—The challenge of mapping the world’s stores of carbon and water. Unasylva 2019, 70, 46–57. [Google Scholar]
- United Nations. Kyoto Protocol (KP); United Nations: Kyoto, Japan, 1997. [Google Scholar]
- Wissenschaftlicher Beirat Agrarpolitik, Ernährung und gesundheitlicher Verbraucherschutz und Wissenschaftlicher Beirat Waldpolitik beim Bundesministerium für Ernährung und Landwirtschaft (BMEL). Klimaschutz in der Land- und Forstwirtschaft sowie den nachgelagerten Bereichen Ernährung und Holzverwendung; BMEL: Berlin, Germany, 2016. [Google Scholar]
- European Commission: 2030 Climate & Energy Framework. Available online: https://ec.europa.eu/clima/policies/strategies/2030 (accessed on 30 August 2019).
- European Commission: 2050 Long-Term Strategy. Available online: https://ec.europa.eu/clima/policies/strategies/2050_en (accessed on 30 August 2019).
- European Parliament; Council of the European Union. Regulation (EU) 2018/842 of the European Parliament and of the Council of 30 May 2018 on Binding Annual Greenhouse Gas Emission Reductions by Member States from 2021 to 2030 Contributing to Climate Action to Meet Commitments under the Paris Agreement and Amending Regulation (EU) No 525/2013 (Burden Sharing Regulation), OJ L 156/26, 19.6.2018; European Parliament; Council of the European Union: Brussels, Belgium, 2018. [Google Scholar]
- European Parliament; Council of the European Union. Regulation (EU) 2018/841 of the European Parliament and of the Council of 30 May 2018 on the Inclusion of Greenhouse Gas Emissions and Removals from Land Use, Land Use Change and Forestry in the 2030 Climate and Energy Framework, and Amending Regulation (EU) No 525/2013 and Decision No 529/2013/EU (LULUCF Regulation), OJ L 156/1, 19.6.2018; European Parliament; Council of the European Union: Brussels, Belgium, 2018. [Google Scholar]
- Paul, S.; Schellenberger, A. Organische Böden, Klima und der Kohlenstoffmarkt. Bull. Bodenkd. Ges. Schweiz 2015, 36, 57–69. [Google Scholar]
- Joosten, H.; Brust, K.; Couwenberg, J.; Gerner, A.; Bettina, H.; Permien, T.; Schäfer, A.; Tanneberger, F.; Michael, T.; Wahren, A. MoorFutures: Integration von weiteren Ökosystemdienstleistungen einschließlich Biodiversität in Kohlenstoffzertifikate—Standard, Methodologie und Übertragbarkeit in andere Regionen; BfN-Skripten; Bundesamt für Naturschutz: Bonn, Germany, 2015. [Google Scholar]
- Chromik, P. Carbon Finance: CO2-Emissionsrechte als Anlageklasse; Diplomica Verlag: Hamburg, Germany, 2009. [Google Scholar]
- Kind, C.; Duwe, S.; Tänzer, D.; Reuster, L.; Kleemann, M.; Krebs, J.-M. Analyse des deutschen Marktes zur freiwilligen Kompensation von Treibhausgasemissionen; Umweltbundesamt: Dessau-Roßlau, Germany, 2010. [Google Scholar]
- Ekardt, F.; Hennig, B. Ökonomische Instrumente und Bewertungen der Biodiversität: Lehren für den Naturschutz aus dem Klimaschutz; Metropolis-Verlag: Marburg, Germany, 2015. [Google Scholar]
- Weishaupt, A. Nachhaltigkeits-Governance tierischer Nahrungsmittel in der EU; Metropolis-Verlag: Marburg, Germany, 2019. [Google Scholar]
- Weishaupt, A.; Ekardt, F.; Garske, B.; Stubenrauch, J.; Wieding, J. Land use, livestock, quantity governance, and economic instruments—Sustainability beyond big livestock herds and fossil fuels. Sustainability 2020, 12, 2053. [Google Scholar] [CrossRef] [Green Version]
- Renou-Wilson, F.; Moser, G.; Fallon, D.; Farrell, C.A.; Müller, C.; Wilson, D. Rewetting degraded peatlands for climate and biodiversity benefits: Results from two raised bogs. Ecol. Eng. 2019, 127, 547–560. [Google Scholar] [CrossRef]
Type of Peatland Use and/or Peat Type | Fens [t CO2eq ha−1 a−1] | Bogs [t CO2eq ha−1 a−1] | Water Level [cm] |
---|---|---|---|
arable land | 33.8 (14.2 to 50.0 [4]) | no data | −70 (−29 to −102) |
grassland (intensive, middle) | 30.9 (21.3 to 40.7 [5]) | 28.3 [1] | −49 (−39 to −98) |
grassland (extensive, dry) | 22.5 (19.5 to 30.9 [4]) | 20.1 [1] | −29 (−14 to −39 |
grassland (extensive, wet) | 10.3 (5.8 to 16.3 [4]) | 2.2 (0 to 4.4 [2]) | −11 (6 to −25) |
bogs (dry) | 9.6 (5.3 to 12.1 [3]) | −18 (−9 to −25) | |
semi-natural (renatured) | 3.3 (−4.3 to 11.9 [5]) | 0.1 (−1.8 to 2.9 [3]) | −10 (−7 to −14) |
inundation | 28.3 (10.6 to 70.7 [4]) | 8.3 (6.1 to 10.4 [2]) | 14 (−8 to 36) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekardt, F.; Jacobs, B.; Stubenrauch, J.; Garske, B. Peatland Governance: The Problem of Depicting in Sustainability Governance, Regulatory Law, and Economic Instruments. Land 2020, 9, 83. https://doi.org/10.3390/land9030083
Ekardt F, Jacobs B, Stubenrauch J, Garske B. Peatland Governance: The Problem of Depicting in Sustainability Governance, Regulatory Law, and Economic Instruments. Land. 2020; 9(3):83. https://doi.org/10.3390/land9030083
Chicago/Turabian StyleEkardt, Felix, Benedikt Jacobs, Jessica Stubenrauch, and Beatrice Garske. 2020. "Peatland Governance: The Problem of Depicting in Sustainability Governance, Regulatory Law, and Economic Instruments" Land 9, no. 3: 83. https://doi.org/10.3390/land9030083
APA StyleEkardt, F., Jacobs, B., Stubenrauch, J., & Garske, B. (2020). Peatland Governance: The Problem of Depicting in Sustainability Governance, Regulatory Law, and Economic Instruments. Land, 9(3), 83. https://doi.org/10.3390/land9030083