People-Centric Nature-Based Land Restoration through Agroforestry: A Typology
Abstract
:1. Introduction
2. Underlying Concepts, Definitions and Approach
2.1. Beyond Tree Planting, the Various Aspects of Restoration
2.2. Definitions
- Degradation: Loss of functionality of e.g., land or forests, usually from a specific human perspective, linked to a change in land cover with consequences for (at least one category of) ecosystem services,
- Degraded lands: Lands that have lost functionality beyond what can be recovered by natural processes and existing land use practices in a defined, policy-relevant time frame,
- Syndrome: Set of concurrent diagnostical indicators or symptoms that can be the result of different and often interacting causes or drivers,
- Restoration: Efforts to halt ongoing and reverse past degradation, by aiming for increased functionality of ecosystems supporting land use (not necessarily recovering past system states)
2.3. The Social-Ecological Cascade Framework
2.4. Our Approach
- to allow a more effective exchange of knowledge and experience between settings where restoration (of any kind) is initiated, planned or in process, based on recognized similarities and contextualized differences, enabling a better confrontation and/or integration of the corresponding evidence-base, and
- to assist planning and priority setting, especially where scarce public resources are involved.
- a typology of contexts/situations, focused on types and levels of ecological degradation in their social contexts, at the system state level of DPSIR, but with attention to the pressures, drivers and impacts as levels of analysis;
- a typology of options for restoration interventions that address symptoms of ecological degradation and/or its drivers, and/or support the social conditions that sustain further improvement.
3. Land Degradation: Symptoms, Drivers, and Indicators
3.1. Symptoms, Syndromes and Diagnostics
3.2. Structural Indicators: Tree Cover Linked to Ecological Functions
3.3. Social Indicators: Services, Benefits And Values
4. Typology of Interventions
4.1. The Social Pentagon As a Starting Point for a Typology of Restoration Options
4.2. Land-Use Change as the Target of Interventions
- R.I. Ecological intensification: where improvements to the resource base are possible within existing land use by combining provisioning, regulating and regenerative aspects of agro-ecosystem functioning, within a context of supportive input and output markets. It may include a re-integration of livestock on farms that specialized into arable-only types of farming, as ‘leys’ as part of a rotation can be both productive and support the recovery of desirable soil properties.
- R.II Recovery/regeneration: where forms of fallow, resting land, exclosures from grazing, fire control and assisted natural regeneration can bring back conditions within which ecological intensification is possible. This level often entails a change in land use, at least temporarily.
- R.III Reparation/recuperation: where more intense action than recovery/regeneration is performed (e.g., tree planting), with additional external support, e.g., by creating access to nurseries for diversified germplasm, knowledge not locally available, inputs (including soil amendments) not currently used, supporting local institutions (and bridging social capital with institutions outside the landscape) not currently effective and/or changing tenurial relations with the state or private sector.
- R IV. Remediation: where past activities such as long-term unsustainable land use, mining, soil pollution or deep drainage have substantially or completely destroyed the ecosystem, preventing its natural functioning or its sustainable exploitation for forestry or agricultural production. This level requires intense specific, typically externally supported, and financed efforts and economic reparation of past damage, e.g., by those who benefited from the unsustainable resource exploitation.
4.3. Reconciling Bottom-Up and Top-Down Restoration Initiatives
- Leave alone: rely on seed banks and seed rains (depending on the dispersal mode of (tree) seeds, distances to ‘mother’ trees, and presence of flying or walking animals as dispersal agents) as the basis of a diverse, locally adapted vegetation,
- Assisted/managed natural regeneration of vegetation or of land infrastructure: dealing with fire, grazing and other pressures and selective retention of desirable trees that can still derive from seedbanks and seed rain,
- Tree and grass planting, land infrastructure building: taking full control of the vegetation and infrastructures that will form the next land cover.
4.4. Typology of Contexts
4.5. A Typology of Restoration Intervention Options by Context
4.6. Discussion: Linking the Options in Context Typology to Issues and Goals Across Scales
5. Conclusions
- There is no single generalizable approach to restoration despite the general notion underlying all restoration interventions is improving or rehabilitating the functionality of the system. Restoration involves multiple entry points most of which arise from either the state of the social-ecological systems or the choices of the people who depend on it.
- Despite the goal similarity (see point 1 above), the entry points to restoration also vary widely. The entry points are defined based on the specific contexts (both the place and its social-ecological aspects) of the system to be restored. It is thus important to understand how the identified entry point could lead to the desired state of the landscape or location and what benefits (e.g., ecosystem services) should be generated from the process of restoration for the effort to be characterized as being impactful.
- Progress along the recovery trajectory in a given landscape or location needs to embrace structural, functional, and social attributes all of which are required to form an agile system with its own improved structural, functional, and social ‘identity’ or characteristics.
- The typology proposed in this paper is a useful one in view of the lack of such structured interpretations of the typologies. It can support further studies on the effectiveness of interventions in different contexts.
- The framework can facilitate extrapolations from a single case, combining an intervention in a context, to other potential combinations. Such a framework can facilitate the establishment of sound research findings, public goods applicable in a diversity of cases, from a reduced number of well- studied cases in the long-term. This multiplication factor is particularly important given the length of restoration projects that increase both the time to observe results and the risks of non or bad intervention.
- Such a typology, grounded on the two axes of contexts and intervention options, can also orient comparative studies in order to support decision making. In particular, it could facilitate estimations ex-ante of costs and benefits, whether marketable or not, of a specific intervention in a specific context by comparison with past comparable interventions in comparable contexts. Such evidence-based estimations are necessary for actors to engage in long-term actions that are often disrupting established interests and to attract long-term investments of external actors, public and private.
- It is also important to move the restoration beyond the forest and agricultural systems and include the ‘special’ places of high social and ecological values. Such places may include water towers, riparian zone and wetlands, peat landscapes, small islands, and mangroves in coastal zones, mining scars and transport infrastructure. The global emphasis on greenhouse gases and food security has given generic forest and agricultural land issues high visibility in claims of tens or hundreds of Mha of restoration, while other critical ecosystems are not getting sufficient attention for their specific needs, which may imply higher costs per unit of land for greater societal benefits.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Available online: http://www.bonnchallenge.org (accessed on 18 July 2020).
- Available online: http://forestdeclaration.org (accessed on 18 July 2020).
- Available online: https://www.decadeonrestoration.org/ (accessed on 18 July 2020).
- Tomich, T.P.; Lidder, P.; Coley, M.; Gollin, D.; Meinzen-Dick, R.; Webb, P.; Carberry, P. Food and agricultural innovation pathways for prosperity. Agric. Syst. 2019, 172, 1–15. [Google Scholar] [CrossRef]
- Gitz, V.; Place, F.; Koziell, I.; Pingault, N.; van Noordwijk, M.; Meybeck, A.; Minang, P. A Joint Stocktaking of CGIAR Work on Forest and Landscape Restoration; Working Paper 4; The CGIAR Research Program on Forests, Trees and Agroforestry (FTA): Bogor, Indonesia, 2020. [Google Scholar]
- Katila, P.; Colfer, C.J.P.; de Jong, W.; Galloway, G.; Pacheco, P.; Winkel, G. (Eds.) Sustainable Development Goals: Their Impacts on Forests and People; Cambridge University Press: Cambridge, UK, 2019; p. 653. [Google Scholar]
- Tidball, K.G. Seeing the forest for the trees: Hybridity and social-ecological symbols, rituals and resilience in postdisaster contexts. Ecol. Soc. 2014, 19, 25. [Google Scholar] [CrossRef] [Green Version]
- Giono, J. The Man Who Planted Trees; Chelsea Green Publishing Co.: Chelsea, VT, USA, 1985. [Google Scholar]
- Robbins, J. The Man Who Planted Trees: Lost Groves, Champion Trees, and an Urgent Plan to Save the Planet; Spiegel & Grau Random House Group: New York, NY, USA, 2012. [Google Scholar]
- McLauchlan, L. A multispecies collective planting trees: Tending to life and making meaning outside of the conservation heroic. Cult. Stud. Rev. 2019, 25, 135–153. [Google Scholar] [CrossRef]
- Available online: https://www.nature.org/en-us/get-involved/how-to-help/plant-a-billion/ (accessed on 15 July 2020).
- Available online: https://www.bbc.com/news/world-africa-50813726 (accessed on 15 July 2020).
- Available online: https://en.wikipedia.org/wiki/Trillion_Tree_Campaign (accessed on 15 July 2020).
- Crowther, T.W.; Glick, H.B.; Covey, K.R.; Bettigole, C.; Maynard, D.; Thomas, S.M.; Smith, J.R.; Hintler, G.; Duguid, M.C.; Amatulli, G.; et al. Mapping tree density at a global scale. Nature 2015, 525, 201. [Google Scholar] [CrossRef]
- Creed. I.F.; van Noordwijk, M. Forests, trees and water on a changing planet: A contemporary scientific perspective. In Forest and Water on a Changing Planet: Vulnerability, Adaptation and Governance Opportunities: A Global Assessment Report (No. 38); Creed, I.F., van Noordwijk, M., Eds.; International Union of Forest Research Organizations (IUFRO): Vienna, Austria, 2018; pp. 13–24. [Google Scholar]
- van Noordwijk, M.; Rahayu, S.; Gebrekirstos, A.; Kindt, R.; Tata, H.L.; Muchugi, A.; Ordonez, J.C.; Xu, J. Tree diversity as basis of agroforestry. In Sustainable Development Through Trees on Farms: Agroforestry in its Fifth Decade; van Noordwijk, M., Ed.; World Agroforestry (ICRAF): Bogor, Indonesia, 2019; pp. 17–44. [Google Scholar]
- Available online: https://www.decadeonrestoration.org/Interactive/tree-planting-and-ecosystem-restoration-crash-course (accessed on 29 July 2020).
- Garrity, D.P.; Bayala, J. Zinder: Farmer-managed natural regeneration of Sahelian parklands in Niger. In Sustainable Development Through Trees on Farms: Agroforestry in its Fifth Decade; van Noordwijk, M., Ed.; World Agroforestry (ICRAF): Bogor, Indonesia, 2019; pp. 151–172. [Google Scholar]
- Duguma, L.A.; Minang, P.A.; Kimaro, A.A.; Otsyina, R.; Mpanda, M. Shinyanga: Blending old and new agroforestry to integrate development, climate change mitigation and adaptation in Tanzania. In Sustainable Development Through Trees on Farms: Agroforestry in its Fifth Decade; van Noordwijk, M., Ed.; World Agroforestry (ICRAF): Bogor, Indonesia, 2019; pp. 121–131. [Google Scholar]
- van Noordwijk, M. (Ed.) Sustainable Development Through Trees on Farms: Agroforestry in its Fifth Decade; World Agroforestry (ICRAF): Bogor, Indonesia, 2019. [Google Scholar]
- Miccolis, A.; Peneireiro, F.M.; Marques, H.R.; Vieira, D.L.M.; Arcoverde, M.F.; Hoffmann, M.R.; Rehder, T.; Pereira, A.V.B. Agroforestry Systems for Ecological Restoration: How to Reconcile Conservation and Production. Options for Brazil’s Cerrado and Caatinga Biomes; Instituto Sociedade, População e Natureza—ISPN/World Agroforestry Centre (ICRAF): Brasília, Brasil, 2016; Available online: https://www.worldagroforestry.org/publication/agroforestry-systems-ecological-restoration-how-reconcile-conservation-and-production (accessed on 29 July 2020).
- Cornelius, J.P.; Miccolis, A. Can market-based agroforestry germplasm supply systems meet the needs of forest landscape restoration? New For. 2018, 49, 457–469. [Google Scholar] [CrossRef]
- HLPE. Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition. In A Report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security; FAO: Rome, Italy, 2019. [Google Scholar]
- Shono, K.; Cadaweng, E.A.; Durst, P.B. Application of assisted natural regeneration to restore degraded tropical forestlands. Restor. Ecol. 2007, 15, 620–626. [Google Scholar] [CrossRef]
- Friday, K.S. Imperata Grassland Rehabilitation Using Agroforestry and Assisted Natural Regeneration; World Agroforestry Centre: Bogor, Indonesia, 1999. [Google Scholar]
- Reij, C.; Garrity, D. Scaling up farmer-managed natural regeneration in Africa to restore degraded landscapes. Biotropica 2016, 48, 834–843. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Guariguata, M.R. Natural regeneration as a tool for large-scale forest restoration in the tropics: Prospects and challenges. Biotropica 2016, 48, 716–730. [Google Scholar] [CrossRef]
- Perrow, M.R.; Davy, A.J. (Eds.) Handbook of Ecological Restoration; Cambridge University Press: Cambridge, UK, 2002; Volume 2. [Google Scholar]
- Van Andel, J.; Aronson, J. Restoration Ecology; Blackwell Publishing: Malden, MA, USA, 2006. [Google Scholar]
- Vaughn, K.J.; Porensky, L.M.; Wilkerson, M.L.; Balachowski, J.; Peffer, E.; Riginos, C.; Young, T.P. Restoration ecology. Nat. Educ. Knowl. 2010, 3, 66. [Google Scholar]
- Clewell, A.; Rieger, J.; Munro, J. Guidelines for Developing and Managing Ecological Restoration Projects, 2nd ed.; Society for Ecological Restoration: Tucson, AZ, USA, 2005; Available online: http://c.ymcdn.com/sites/www.ser.org/resource/resmgr/custompages/publications/ser_publications/Dev_and_Mng_Eco_Rest_Proj.pdf (accessed on 29 July 2020).
- Buckingham, K.; Weber, S. Assessing the ITTO Guidelines for the Restoration, Management, and Rehabilitation of Degraded Secondary Tropical Forests—Case Studies of Ghana, Indonesia, and Mexico; International Tropical Tree Organization (ITTO) Consultancy with the World Resources Institute (WRI): Yokahama, Japan, 2015; Available online: http://www.itto.int/direct/topics/topics_pdf_download/topics_id=4632&no=1 (accessed on 29 July 2020).
- Stanturf, J.; Mansourian, S.; Kleine, M. (Eds.) Implementing Forest Landscape Restoration, A Practitioner’s Guide; International Union of Forest Research Organizations, Special Programme for Development of Capacities (IUFRO-SPDC): Vienna, Austria, 2017; p. 128. [Google Scholar]
- Chazdon, R.L.; Brancalion, P.H.; Lamb, D.; Laestadius, L.; Calmon, M.; Kumar, C. A policy-driven knowledge agenda for global forest and landscape restoration. Conserv. Lett. 2017, 10, 125–132. [Google Scholar] [CrossRef]
- Clewell, A.F.; Aronson, J. Ecological Restoration: Principles, Values, and Structure of an Emerging Profession; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Duguma, L.A.; Minang, P.A.; Mpanda, M.; Kimaro, A.; Alemagi, D. Landscape restoration from a social-ecological system perspective? In Climate-Smart Landscapes: Multifunctionality in Practice; World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2015; pp. 63–72. [Google Scholar]
- Erbaugh, J.T.; Oldekop, J.A. Forest landscape restoration for livelihoods and well-being. Curr. Opin. Environ. Sustain. 2018, 32, 76–83. [Google Scholar] [CrossRef]
- Kerr, J.; Verbist, B.; Suyanto; Pender, J. Placement of a payment for watershed services program in indonesia: Social and ecological factors. In Co-Investment in Ecosystem Services: Global Lessons from Payment and Incentive Schemes; Namirembe, S., Leimona, B., van Noordwijk, M., Minang, P., Eds.; World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2017. [Google Scholar]
- IUCN/WRI. A Guide to the Restoration Opportunities Assessment Methodology (ROAM): Assessing Forest Landscape Restoration Opportunities at the National or Sub-National Level; Working Paper (Road-test edition); IUCN: Gland, Switzerland, 2014; p. 125. Available online: http://www.bonnchallenge.org/content/restoration-opportunities-assessment-methodology-roam (accessed on 29 July 2020).
- Ghazoul, J.; Chazdon, R. Degradation and recovery in changing forest landscapes: A multiscale conceptual framework. Annu. Rev. Environ. Resour. 2017, 42, 161–188. [Google Scholar] [CrossRef] [Green Version]
- de Souza, S.E.F.; Vidal, E.; Chagas, G.D.F.; Elgar, A.T.; Brancalion, P.H. Ecological outcomes and livelihood benefits of community-managed agroforests and second growth forests in Southeast Brazil. Biotropica 2016, 48, 868–881. [Google Scholar] [CrossRef]
- Baynes, J.; Herbohn, J.; Smith, C.; Fisher, R.; Bray, D. Key factors which influence the success of community forestry in developing countries. Glob. Environ. Chang. 2015, 35, 226–238. [Google Scholar] [CrossRef]
- HLPE. Sustainable Forestry for Food Security and Nutrition: A Report by the High-Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security; FAO: Rome, Italy, 2017; Available online: http://www.fao.org/3/a-i7395e.pdf (accessed on 29 July 2020).
- IRP. Land Restoration for Achieving the Sustainable Development Goals: An International Resource Panel Think Piece; Herrick, J.E., Abrahamse, T., Abhilash, P.C., Ali, S.H., Alvarez-Torres, P., Barau, A.S., Branquinho, C., Chhatre, A., Chotte, J.L., Von Maltitz, G.P., Eds.; United Nations Environment Programme: Nairobi, Kenya, 2019. [Google Scholar]
- Besseau, P.; Graham, S.; Christophersen, T. Restoring Forests and Landscapes: The Key to a Sustainable Future; IUFRO On Behalf of the Global Partnership on Forest and Landscape Restoration: Vienna, Austria, 2018. [Google Scholar]
- Chazdon, R.L.; Wilson, S.J.; Brondizio, E.; Guariguata, M.R.; Herbohn, J. Key challenges for governing forest and landscape restoration across different contexts. Land Use Policy 2020, 104854. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Gutierrez, V.; Brancalion, P.H.; Laestadius, L.; Guariguata, M.R. Co-creating conceptual and working frameworks for implementing forest and landscape restoration based on core principles. Forests 2020, 11, 706. [Google Scholar] [CrossRef]
- Djenontin, I.N.S.; Zulu, L.C.; Ligmann-Zielinska, A. Improving representation of decision rules in LUCC-ABM: An example with an elicitation of farmers’ decision making for landscape restoration in central malawi. Sustainability 2020, 12, 5380. [Google Scholar] [CrossRef]
- Lee, D.R.; Barrett, C.B. (Eds.) Tradeoffs or Synergies? Agricultural Intensification, Economic Development, and the Environment; CABI: Wallingford, UK, 2000; p. 538. [Google Scholar]
- van Noordwijk, M. Integrated natural resource management as pathway to poverty reduction: Innovating practices, institutions and policies. Agric. Syst. 2019, 172, 60–71. [Google Scholar] [CrossRef]
- Jackson, L.; van Noordwijk, M.; Bengtsson, J.; Foster, W.; Lipper, L.; Pulleman, M.; Said, M.; Snaddon, J.; Vodouhe, R. Biodiversity and agricultural sustainagility: From assessment to adaptive management. Curr. Opin. Environ. Sustain. 2010, 2, 80–87. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 1–33. [Google Scholar] [CrossRef]
- Rockström, J.; Falkenmark, M.; Allan, T.; Folke, C.; Gordon, L.; Jägerskog, A.; Kummu, M.; Lannerstad, M. The unfolding water drama in the Anthropocene: Towards a resilience-based perspective on water for global sustainability. Ecohydrology 2014, 7, 1249–1261. [Google Scholar] [CrossRef]
- van Noordwijk, M.; Bargues-Tobella, A.; Muthuri, C.W.; Gebrekirstos, A.; Maimbo, M.; Leimona, B.; Bayala, J.; Ma, X.; Lasco, R.; Xu, J.; et al. Agroforestry as part of nature-based water management. In Sustainable Development through Trees on Farms: Agroforestry in its Fifth Decade; van Noordwijk, M., Ed.; World Agroforestry (ICRAF): Bogor, Indonesia, 2019; pp. 305–334. [Google Scholar]
- Sayer, J.; Sunderland, T.; Ghazoul, J.; Pfund, J.-L.; Sheil, D.; Meijaard, E.; Venter, M.; Boedhihartono, A.K.; Day, M.; Garcia, C.; et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl. Acad. Sci. USA 2013, 110, 8349–8356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, O.E.; Duguma, L.A.; Minang, P.A. Operationalizing the integrated landscape approach in practice. Ecol. Soc. 2015, 20, 24. Available online: http://www.ecologyandsociety.org/vol20/iss1/art24/ (accessed on 29 July 2020). [CrossRef] [Green Version]
- Minang, P.A.; van Noordwijk, M.; Freeman, O.E.; Mbow, C.; de Leeuw, J.; Catacutan, D. (Eds.) Climate-Smart Landscapes: Multifunctionality In Practice; World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2015; p. 444. ISBN 978-92-9059-375-1. Available online: http://asb.cgiar.org/climate-smart-landscapes/ (accessed on 29 July 2020).
- Reed, J.; van Vianen, J.; Deakin, E.L.; Barlow, J.; Sunderland, T. Integrated landscape approaches to managing social and environmental issues in the tropics: Learning from the past to guide the future. Glob. Chang. Biol. 2016, 22, 2540–2554. [Google Scholar] [CrossRef]
- Sayer, J.; Margules, C.; Boedhihartono, A.K.; Sunderland, T.; Langston, J.D.; Reed, J.; Riggs, R.A.; Buck, L.E.; Campbell, B.M.; Kusters, K.; et al. Measuring the effectiveness of landscape approaches to conservation and development. Sustain. Sci. 2016, 12, 465–476. [Google Scholar] [CrossRef]
- Wilson, S.J.; Cagalanan, D. Governing restoration: Strategies, adaptations and innovations for tomorrow’s forest landscapes. World Dev. Perspect. 2016, 4, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Evans, K.A.; Guariguata, M.R. Success from the ground up: Participatory monitoring and forest restoration. In Occasional Paper 159; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2016; Available online: http://www.cifor.org/publications/pdf_fies/OccPapers/OP-159.pdf (accessed on 20 July 2020).
- FAO. Global Guidelines for the Restoration of Degraded Forests and Landscapes in Drylands: Building Resilience and Benefiting Livelihoods; FAO Forestry Paper 175; Food and Agricultural Organization of the United Nations: Rome, Italy, 2015; Available online: http://www.fao.org/3/a-i5036e.pdf (accessed on 20 July 2020).
- Bozzano, M.; Jalone, R.; Thomas, E.; Boschier, D.; Gallo, L.; Cavers, S.; Bordacs, S.; Smith, P.; Loo, J. (Eds.) Genetic Considerations in Ecosystem Restoration Using Native Tree Species; FAO and Bioversity International: Rome, Italy, 2014; Available online: http://www.fao.org/3/a-i3938e.pdf (accessed on 29 July 2020).
- Dawson, I.K.; Leakey, R.; Clement, C.R.; Weber, J.C.; Cornelius, J.P.; Roshetko, J.M.; Vinceti, B.; Kalinganire, A.; Tchoundjeu, Z.; Masters, E.; et al. The management of tree genetic resources and the livelihoods of rural communities in the tropics: Non-timber forest products, smallholder agroforestry practices and tree commodity crops. For. Ecol. Manag. 2014, 333, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Jalonen, R.; Valette, M.; Boshier, D.; Duminil, J.; Thomas, E. Forest and landscape restoration severely constrained by a lack of attention to the quantity and quality of tree seed: Insights from a global survey. Conserv. Lett. 2018, 11, e12424. [Google Scholar] [CrossRef]
- Sinclair, F.L.; Coe, R. The options by context approach: A paradigm shift in agronomy. Exp. Agric. 2019, 55, 1–13. [Google Scholar] [CrossRef] [Green Version]
- van Noordwijk, M.; Coe, R. Methods in agroforestry research across its three paradigms. In Sustainable Development Through Trees on Farms: Agroforestry in Its Fifth Decade; van Noordwijk, M., Ed.; World Agroforestry (ICRAF): Bogor, Indonesia, 2019; pp. 379–402. [Google Scholar]
- Mithöfer, D.; van Noordwijk, M.; Leimona, B.; Cerutti, P.O. Certify and shift blame, or resolve issues? Environmentally and socially responsible global trade and production of timber and tree crops. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 72–85. [Google Scholar] [CrossRef] [Green Version]
- Leimona, B.; van Noordwijk, M.; Mithöfer, D.; Cerutti, P.O. Environmentally and socially responsible global production and trade of timber and tree crop commodities: Certification as a transient issue-attention cycle response to ecological and social issues. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2018, 13, 497–502. [Google Scholar] [CrossRef] [Green Version]
- van Noordwijk, M.; Dewi, S.; Minang, P.A.; Simons, A.J. Deforestation-free claims: Scams or substance? In Zero Deforestation: A Commitment to Change; Pasiecznik, N., Savenije, H., Eds.; Tropenbos International: Wageningen, The Netherlands, 2017; pp. 11–16. [Google Scholar]
- Creed, I.F.; van Noordwijk, M. (Eds.) Forest and Water on a Changing Planet: Vulnerability, Adaptation and Governance Opportunities: A Global Assessment Report (No. 38); International Union of Forest Research Organizations (IUFRO): Vienna, Austria, 2018. [Google Scholar]
- Harris, J.A.; Hobbs, R.J.; Higgs, E.; Aronson, J. Ecological restoration and global climate change. Restor. Ecol. 2006, 14, 170–176. [Google Scholar] [CrossRef]
- Meli, P.; Holl, K.D.; Benayas, J.M.R.; Jones, H.P.; Jones, P.C.; Montoya, D.; Mateos, D.M. A global review of past land use, climate, and active vs. passive restoration effects on forest recovery. PLoS ONE 2017, 12, e0171368. [Google Scholar] [CrossRef] [PubMed]
- Mansourian, S.; Dudley, N.; Vallauri, D. Forest landscape restoration: Progress in the last decade and remaining challenges. Ecol. Restor. 2017, 35, 281–288. [Google Scholar] [CrossRef]
- Swinfield, T.; Afriandi, R.; Antoni, F.; Harrison, R.D. Accelerating tropical forest restoration through the selective removal of pioneer species. For. Ecol. Manag. 2016, 381, 209–216. [Google Scholar] [CrossRef]
- Harrison, R.D.; Tan, S.; Plotkin, J.B.; Slik, F.; Detto, M.; Brenes, T.; Itoh, A.; Davies, S.J. Consequences of defaunation for a tropical tree community. Ecol. Lett. 2013, 16, 687–694. [Google Scholar] [CrossRef]
- de Royer, S.; van Noordwijk, M.; Roshetko, J. Does community-based forest management in Indonesia devolve social justice or social costs? Int. For. Rev. 2018, 20, 167–180. [Google Scholar] [CrossRef]
- van Noordwijk, M.; Leimona, B. Principles for fairness and efficiency in enhancing environmental services in Asia: Payments, compensation, or co-investment? Ecol. Soc. 2010, 15, 17. [Google Scholar] [CrossRef]
- Leimona, B.; van Noordwijk, M.; de Groot, R.; Leemans, R. Fairly efficient, efficiently fair: Lessons from designing and testing payment schemes for ecosystem services in Asia. Ecosyst. Serv. 2015, 12, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Namirembe, S.; Leimona, B.; van Noordwijk, M.; Minang, P.A. Co-Investment in Ecosystem Services: Global Lessons from Payment and Incentive Schemes; World Agroforestry (ICRAF): Nairobi, Kenya, 2017; Chapter 1; Available online: https://www.worldagroforestry.org/sites/default/files/u884/Ch1_IntroCoinvest_ebook.pdf (accessed on 20 July 2020).
- Meinzen-Dick, R.; Quisumbing, A.; Doss, C.; Theis, S. Women’s land rights as a pathway to poverty reduction: Framework and review of available evidence. Agric. Syst. 2017, 172, 72–82. [Google Scholar] [CrossRef]
- Kusters, K.; Buck, L.; de Graaf, M.; Minang, P.A.; van Oosten, C.; Zagt, R. Participatory planning, monitoring and evaluation of multi-stakeholder platforms in integrated landscape initiatives. Environ. Manag. 2017, 2, 170–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Noordwijk, M.; Kim, Y.S.; Leimona, B.; Hairiah, K.; Fisher, L.A. Metrics of water security, adaptive capacity and agroforestry in Indonesia. Curr. Opin. Environ. Sustain. 2016, 21, 1–8. [Google Scholar] [CrossRef]
- Ahrends, A.; Hollingsworth, P.M.; Beckschäfer, P.; Chen, H.; Zomer, R.J.; Zhang, L.; Wang, M.; Xu, J. China’s fight to halt tree cover loss. Proc. R. Soc. B 2017, 284. [Google Scholar] [CrossRef]
- Wangpakapattanawong, P.; Kavinchan, N.; Vaidhayakarn, C.; Schmidt-Vogt, D.; Elliott, S. Fallow to forest: Applying indigenous and scientific knowledge of swidden cultivation to tropical forest restoration. For. Ecol. Manag. 2010, 260, 1399–1406. [Google Scholar] [CrossRef]
- Chirwa, P.W.; Mahamane, L. Overview of restoration and management practices in the degraded landscapes of the Sahelian and dryland forests and woodlands of East and southern Africa. South. For. J. For. Sci. 2017, 79, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Mokria, M.; Tolera, M.; Sterck, F.J.; Gebrekirstos, A.; Bongers, F.; Decuyper, M.; Sass-Klaassen, U. The frankincense tree Boswellia neglecta reveals high potential for restoration of woodlands in the Horn of Africa. For. Ecol. Manag. 2017, 385, 16–24. [Google Scholar] [CrossRef]
- Miccolis, A. Restoration through agroforestry: Options for reconciling livelihoods with conservation in the cerrado and caatinga biomes in Brazil. Exp. Agric. 2017, 55, 208–225. [Google Scholar] [CrossRef] [Green Version]
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J.; et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 2019, 27, S1–S46. [Google Scholar] [CrossRef] [Green Version]
- IPBES. The IPBES Assessment Report on Land Degradation And Restoration; Montanarella, L., Scholes, R., Brainich, A., Eds.; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2018; p. 44. Available online: https://ipbes.net/sites/default/files/2018_ldr_full_report_book_v4_pages.pdf (accessed on 29 July 2020).
- Available online: https://www.iucn.org/theme/forests/our-work/forest-landscape-restoration (accessed on 29 July 2020).
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Current State and Trends; Island Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Available online: https://www.iucn.org/news/protected-areas/201905/enhancing-progress-towards-aichi-target-11#:~:text=As%20reported%20in%20the%20latest,and%2010%25%20of%20the%20sea.&text=In%20an%20effort%20to%20ramp,Partnership%20on%20Aichi%20Target%2011 (accessed on 18 July 2020).
- Potschin-Young, M.; Haines-Young, R.; Görg, C.; Heink, U.; Jax, K.; Schleyer, C. Understanding the role of conceptual frameworks: Reading the ecosystem service cascade. Ecosyst. Serv. 2018, 29, 428–440. [Google Scholar] [CrossRef]
- Van Noordwijk, M.; Minang, P.A. If We Cannot Define It, We Cannot Save It: Forest Definitions and REDD; Tropenbos International: Wageningen, The Netherlands, 2009. [Google Scholar]
- Chazdon, R.L.; Brancalion, P.H.; Laestadius, L.; Bennett-Curry, A.; Buckingham, K.; Kumar, C.; Wilson, S.J. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 2016, 45, 538–550. [Google Scholar] [CrossRef]
- Dignac, M.F.; Derrien, D.; Barré, P.; Barot, S.; Cécillon, L.; Chenu, C.; Chevallier, T.; Freschet, G.T.; Garnier, P.; Guenet, B.; et al. Increasing soil carbon storage: Mechanisms, effects of agricultural practices and proxies. A review. Agron. Sustain. Dev. 2017, 37, 14. [Google Scholar] [CrossRef] [Green Version]
- Suprayogo, D.; van Noordwijk, M.; Hairiah, K.; Meilasari, N.; Rabbani, A.L.; Ishaq, R.M.; Widianto, W. Infiltration-Friendly Agroforestry Land Uses on Volcanic Slopes in the Rejoso Watershed, East Java, Indonesia. Land 2020, 9, 240. [Google Scholar] [CrossRef]
- Shepherd, K.D.; Shepherd, G.; Walsh, M.G. Land health surveillance and response: A framework for evidence-informed land management. Agric. Syst. 2015, 132, 93–106. [Google Scholar] [CrossRef]
- Tomich, T.P.; Chomitz, K.; Francisco, H.; Izac, A.M.N.; Murdiyarso, D.; Ratner, B.D.; Thomas, D.E.; van Noordwijk, M. Policy analysis and environmental problems at different scales: Asking the right questions. Agric. Ecosyst. Environ. 2004, 104, 5–18. [Google Scholar] [CrossRef]
- Namirembe, S.; Leimona, B.; van Noordwijk, M.; Minang, P.A. Co-Investment in Ecosystem Services: Global Lessons from Payment and Incentive Schemes; World Agroforestry (ICRAF): Nairobi, Kenya, 2019. [Google Scholar]
- van Noordwijk, M.; Duguma, L.A.; Dewi, S.; Leimona, B.; Catacutan, D.M.; Lusiana, B.; Öborn, I.; Hairiah, K.; Minang, P.A. SDG synergy between agriculture and forestry in the food, energy, water and income nexus: Reinventing agroforestry? Curr. Opin. Environ. Sustain. 2018, 34, 33–42. [Google Scholar] [CrossRef]
- Minang, P.A.; van Noordwijk, M.; Duguma, L.A. Policies for ecosystem services enhancement. In Sustainable Development Through Trees on Farms: Agroforestry in its Fifth Decade; van Noordwijk, M., Ed.; World Agroforestry (ICRAF): Bogor, Indonesia, 2019; pp. 361–376. [Google Scholar]
- Rudel, T.K. Did a green revolution restore the forests of the American South. In Agricultural Technologies and Tropical Deforestation; Angelsen, A., Kaimowitz, D., Eds.; CABi: Wallingford, UK, 2001; pp. 53–68. [Google Scholar]
- Minang, P.A.; van Noordwijk, M.; Kahurani, E. Partnership in the Tropical Forest Margins: A 20-Year Journey in Search of Alternatives to Slash-and-Burn; World Agroforestry: Nairobi, Kenya, 2014; p. 241. [Google Scholar]
- Li, S.; Li, X. Global understanding of farmland abandonment: A review and prospects. J. Geogr. Sci. 2017, 27, 1123–1150. [Google Scholar] [CrossRef]
- Schröder, P.; Antonarakis, A.S.; Brauer, J.; Conteh, A.; Kohsaka, R.; Uchiyama, Y.; Pacheco, P. SDG 12: Responsible consumption and production–Potential Benefits and impacts on forests and livelihoods. In Sustainable Development Goals: Their Impacts on Forests and People; Katila, P., Colfer, C.J.P., de Jong, W., Galloway, G., Pacheco, P., Winkel, G., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 386–418. [Google Scholar]
- Dewi, S.; van Noordwijk, M.; Zulkarnain, M.T.; Dwiputra, A.; Prabhu, R.; Hyman, G.; Gitz, V.; Nasi, R. Tropical forest-transition landscapes: A portfolio for studying people, tree crops and agro-ecological change in context. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 312–329. [Google Scholar] [CrossRef]
- Filoso, S.; Bezerra, M.O.; Weiss, K.C.; Palmer, M.A. Impacts of forest restoration on water yield: A systematic review. PLoS ONE 2017, 12, e0183210. [Google Scholar] [CrossRef] [Green Version]
- Ilstedt, U.; Tobella, A.B.; Bazié, H.R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; et al. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef]
- van Noordwijk, M.; Tanika, L.; Lusiana, B. Flood risk reduction and flow buffering as ecosystem services—Part I: Theory on a flow persistence indicator. Hydrol. Earth Syst. Sci. 2017, 21, 2321–2340. [Google Scholar] [CrossRef] [Green Version]
- van Noordwijk, M.; Tanika, L.; Lusiana, B. Flood risk reduction and flow buffering as ecosystem services—Part II: Land use and rainfall intensity effects in Southeast Asia. Hydrol. Earth Syst. Sci. 2017, 21, 2341–2360. [Google Scholar] [CrossRef] [Green Version]
- Dufour, S.; Piégay, H. From the myth of a lost paradise to targeted river restoration: Forget natural references and focus on human benefits. River Res. Appl. 2009, 25, 568–581. [Google Scholar] [CrossRef]
- Ellison, D.; Morris, C.; Locatelli, B.; Sheil, D.; Cohen, J.D.M.; Murdiyarso, D.; Gutierrez, V.; Van Noordwijk, M.; Creed, I.F.; Pokorny, J.; et al. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Chang. 2017, 43, 51–61. [Google Scholar] [CrossRef]
- Bonnesoeur, V.; Locatelli, B.; Guariguata, M.R.; Ochoa-Tocachi, B.F.; Vanacker, V.; Mao, Z.; Stokes, A.; Mathez-Stiefel, S.L. Impacts of forests and forestation on hydrological services in the Andes: A systematic review. For. Ecol. Manag. 2019, 433, 569–584. [Google Scholar] [CrossRef] [Green Version]
- Sternberg, L.D. Savanna-forest hysteresis in the tropics. Glob. Ecol. Biogeogr. 2001, 10, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Hirota, M.; Holmgren, M.; Van Nes, E.H.; Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 2011, 334, 232–235. [Google Scholar] [CrossRef] [Green Version]
- van Noordwijk, M.; Ekadinata, A.; Leimona, B.; Catacutan, D.C.; Martini, E.; Tata, H.L.; Öborn, I.; Hairiah, K.; Wangpakapattanawong, P.; Mulia, R.; et al. Agroforestry Options for Degraded Landscapes in Southeast Asia; Dagar, J.C., Gupta, S.R., Teketay, D., Eds.; Agroforestry for Degraded Landscapes Springer: Singapore, 2020; in press. [Google Scholar]
- Leimona, B.; van Noordwijk, M.; Kennedy, S.; Namirembe, S.; Minang, P.A. Synthesis and lessons on ecological, economic, social and governance propositions. In Co -Investment in Ecosystem Services: Global Lessons from Payment and Incentive Schemes; Namirembe, S., Leimona, B., van Noordwijk, M., Minang, P.A., Eds.; World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2019; Chapter 38. [Google Scholar]
- Van Noordwijk, M.; Leimona, B.; Jindal, R.; Villamor, G.B.; Vardhan, M.; Namirembe, S.; Catacutan, D.; Kerr, J.; Minang, P.A.; Tomich, T.P. Payments for Environmental Services: Evolution toward efficient and fair incentives for multifunctional landscapes. Annu. Rev. Environ. Resour. 2012, 37, 389–420. [Google Scholar] [CrossRef]
- Chapman, M.; Satterfield, T.; Wittman, H.; Chan, K.M. A payment by any other name: Is Costa Rica’s PES a payment for services or a support for stewards? World Dev. 2020, 129, 104900. [Google Scholar] [CrossRef]
- Minang, P.A.; van Noordwijk, M. Design challenges for achieving reduced emissions from deforestation and forest degradation through conservation: Leveraging multiple paradigms at the tropical forest margins. Land Use Policy 2013, 31, 61–70. [Google Scholar] [CrossRef]
- Barr, C.M.; Sayer, J.A. The political economy of reforestation and forest restoration in Asia–Pacific: Critical issues for REDD+. Biol. Cons. 2012, 154, 9–19. [Google Scholar] [CrossRef]
- van Noordwijk, M. Prophets, profits, prove it: Social forestry under pressure. One Earth 2020, 2, 394–397. [Google Scholar] [CrossRef]
- Minang, P.A.; Van Noordwijk, M.; Duguma, L.; Alemagi, D.; Do, T.H.; Bernard, F.; Agung, P.; Robiglio, V.; Catacutan, D.; Suyanto, S.; et al. REDD+ Readiness progress across countries: Time for reconsideration. Clim. Policy 2014, 14, 685–708. [Google Scholar] [CrossRef] [Green Version]
- van Noordwijk, M.; Leimona, B.; Amaruzaman, S. Sumber Jaya from conflict to source of wealth in Indonesia: Reconciling coffee agroforestry and watershed functions. In Sustainable Development Through Trees on Farms: Agroforestry in its Fifth Decade; van Noordwijk, M., Ed.; World Agroforestry (ICRAF): Bogor, Indonesia, 2019; pp. 177–192. [Google Scholar]
- Singh, R.; van Noordwijk, M.; Chaturvedi, O.P.; Garg, K.K.; Dev, I.; Wani, S.P.; Rizvi, J. Bundelkhand: Public co-investment in groundwater recharge in India. In Sustainable Development Through Trees on Farms: Agroforestry in its Fifth Decade; van Noordwijk, M., Ed.; World Agroforestry (ICRAF): Bogor, Indonesia, 2019; pp. 201–208. [Google Scholar]
- FAO/UNEP. Terminology for Integrated Resources Planning and Management; United Nations Environmental Programme: Kenya, Nairobi; FAO: Rome, Italy, 1999. [Google Scholar]
- FAO. Land Cover Classification System Classification Concepts and User Manual Software Version (2); Di Gregorio, A., Jansen, L.J.M., Eds.; FAO: Rome, Italy, 2005; Available online: http://www.fao.org/3/y7220e/y7220e00.htm (accessed on 20 July 2020).
- FAO/ITPS. Status of the World’s Soil Resources (SWSR)—Main Report; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015; p. 650. Available online: http://www.fao.org/3/a-i5199e.pdf (accessed on 20 July 2020).
- Bayala, J.; Sanou, J.; Teklehaimanot, Z.; Ouedraogo, S.J.; Kalinganire, A.; Coe, R.; Van Noordwijk, M. Advances in knowledge of processes in soil–tree–crop interactions in parkland systems in the West African Sahel: A review. Agric. Ecosyst. Environ. 2015, 205, 25–35. [Google Scholar] [CrossRef]
- van Noordwijk, M.; Speelman, E.; Hofstede, G.J.; Farida, A.; Abdurrahim, A.Y.; Miccolis, A.; Hakim, A.L.; Wamucii, C.N.; Lagneaux, E.; Andreotti, F.; et al. Sustainable agroforestry management: Changing the game. Land 2020, 9, 243. [Google Scholar] [CrossRef]
- Saragi-Sasmito, M.F.; Murdiyarso, D.; June, T.; Sasmito, S.D. Carbon stocks, emissions, and aboveground productivity in restored secondary tropical peat swamp forests. Mitig. Adapt. Strat. Glob. Chang. 2018, 24, 521–533. [Google Scholar] [CrossRef] [Green Version]
- Widayati, A.; Tata, H.L.; van Noordwijk, M. Agroforestry in peatlands: Combining productive and protective functions as part of restoration. In Agroforestry Options for ASEAN Series No. 4; World Agroforestry Centre (ICRAF): Bogor, Indonesia, 2016. [Google Scholar]
- van Noordwijk, M.; Matthews, R.B.; Agus, F.; Farmer, J.; Verchot, L.; Hergoualc’h, K.; Persch, S.; Tata, H.L.; Lusiana, B.; Widayati, A.; et al. Mud, muddle and models in the knowledge value- chain to action on tropical peatland issues. Mitig. Adapt. Strat. Glod. Chang. 2014, 19, 863–885. [Google Scholar]
- van Noordwijk, M. Small-island agroforestry in an era of climate change and sustainable development goals. In Sustainable Development Through Trees on Farms: Agroforestry in its Fifth Decade; van Noordwijk, M., Ed.; World Agroforestry (ICRAF): Bogor, Indonesia, 2019; pp. 233–248. [Google Scholar]
- Chan, H.T.; Baba, S. Manual on Guidelines for Rehabilitation of Coastal Forests Damaged by Natural Hazards in the Asia-Pacific Region; International Society for Mangrove Ecosystems and International Tropical Timber Organization (ITTO): Yokahama, Japan, 2009; Available online: http://www.preventionweb.net/fies/13225_ISMEManualoncoastalforestrehabilita.pdf (accessed on 20 July 2020).
- Global Nature Fund. Mangrove Restoration Guide, Best Practices and Lessons Learned from a Community-Based Conservation Project; Global Nature Fund: Radolfzell, Germany, 2015; Available online: https://www.globalnature.org/bausteine.net/f/8281/GNF_Mangrove_Handbook_2015.pdf?fd=0 (accessed on 20 July 2020).
- Sasmito, S.D.; Murdiyarso, D.; Friess, D.A.; Kurnianto, S. Can mangroves keep pace with contemporary sea level rise? A global data review. Wetl. Ecol. Manag. 2016, 24, 263–278. [Google Scholar] [CrossRef]
- Wong, M.H. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 2003, 50, 775–780. [Google Scholar] [CrossRef]
- Hairiah, K.; van Noordwijk, M.; Sari, R.R.; Saputra, D.D.; Widianto; Suprayogo, D.; Kurniawan, S.; Prayogo, C.; Gusli, S. Soil carbon stocks in Indonesian (agro)forest transitions: Compaction conceals lower carbon concentrations in standard accounting. Agric. Ecosyst. Environ. 2020, 294, 106879. [Google Scholar] [CrossRef]
- van Noordwijk, M.; Goverse, T.; Ballabio, C.; Banwart, S.; Bhattacharyya, T.; Goldhaber, M.; Nikolaidis, N.; Noellemeyer, E.; Zhao, Y.; Mline, E. Soil carbon transition curves: Reversal of land degradation through management of soil organic matter for multiple benefits. In Soil Carbon: Science, Management and Policy for Multiple Benefits; Banwart, S.A., Noellemeyer, E., Milne, E., Eds.; CAB International: Harpenden, UK, 2015; pp. 26–46. [Google Scholar]
- Minasny, B.; Malone, B.; McBratney, A.B.; Angers, D.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Tomich, T.P.; van Noordwijk, M.; Budidarsono, S.; Gillison, A.N.; Kusumanto, Y.; Murdiyarso, D.; Stolle, F.; Fagi, A.M. Agricultural intensification, deforestation, and the environment: Assessing tradeoffs in Sumatra, Indonesia. In Tradeoffs or Synergies? Agricultural Intensification, Economic Development and the Environment; Lee, D.R., Barrett, C.B., Eds.; CAB-International: Wallingford, UK, 2001; pp. 221–244. [Google Scholar]
- Tomich, T.P.; van Noordwijk, M. Trade-off matrix between private and public benefits of land-use systems (ASB Matrix). In Negotiation-Support Toolkit for Learning Landscapes; van Noordwijk, M., Lusiana, B., Leimona, B., Dewi, S., Wulandari, D., Eds.; World Agroforestry Centre (ICRAF): Bogor, Indonesia, 2013; pp. 118–119. [Google Scholar]
- Dewi, S.; Ekadinata, A.; Galudra, G.; Agung, P.; Johana, F. LUWES: Land use planning for low emission development strategy. World Agrofor. Cent. Bogor. Indones 2011. 47p. Available online: http://www.worldagroforestry.org/output/land-use-planning-low-emission-development-strategy-luwes (accessed on 20 July 2020).
- Neely, C.; Bourne, M.; Chesterman, S.; Kouplevatskaya-Buttoud, I.; Bojic, D.; Vallée, D. Implementing 2030 Agenda for Food and Agriculture: Accelerating Impact through Cross-Sectoral Coordination; World Agroforestry Centre (ICRAF) and Food and Agricultural Organization of The United Nations (FAO): Nairobi, Kenya; Rome, Italy, 2017; Available online: http://www.fao.org/3/a-i7749e.pdf (accessed on 20 July 2020).
- Clark, W.C.; Tomich, T.P.; Van Noordwijk, M.; Guston, D.; Catacutan, D.C.; Dickson, N.M.; McNie, E. Boundary work for sustainable development: Natural resource management at the Consultative Group on International Agricultural Research (CGIAR). Proc. Natl. Acad. Sci. USA 2016, 113, 4615–4622. [Google Scholar] [CrossRef] [Green Version]
- Robiglio, V.; Reyes, M. Restoration through formalization? Assessing the potential of Peru’s Agroforestry Concessions scheme to contribute to restoration in agricultural frontiers in the Amazon region. World Dev. Perspect. 2016, 3, 42–46. [Google Scholar] [CrossRef]
- Villamor, G.B.; van Noordwijk, M.; Leimona, B.; Duguma, L. Tradeoffs. In Co-Investment in Ecosystem Services: Global Lessons from Payment and Incentive Schemes; Namirembe, S., Leimona, B., van Noordwijk, M., Minang, P.A., Eds.; ICRAF: Nairobi, Kenya, 2017; Chapter 3; Available online: http://www.worldagroforestry.org/sites/default/files/chapters/Ch3%20Trade-offs_ebookB-DONE2.pdf (accessed on 20 July 2020).
- Suwarno, A.; van Noordwijk, M.; Weikard, H.P.; Suyamto, D. Indonesia’s forest conversion moratorium assessed with an agent-based model of Land-Use Change and Ecosystem Services (LUCES). Mitig. Adapt. Strat. Glob. Chang. 2018, 23, 211–229. [Google Scholar] [CrossRef] [Green Version]
- Amaruzaman, S.; Leimona, B.; van Noordwijk, M.; Lusiana, B. Discourses on the performance gap of agriculture in a green economy: A Q-methodology study in Indonesia. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 233–247. [Google Scholar] [CrossRef]
- Langston, J.; McIntyre, R.; Falconer, K.; Sunderland, T.J.C.; van Noordwijk, M.; Boedihartono, A.K. Discourses mapped by Q-method show governance constraints motivate landscape approaches in Indonesia. PLoS ONE 2019, 14, e0211221. [Google Scholar] [CrossRef]
Starting Point | Symptom | Example of Contributing Pressures |
---|---|---|
Structure | Loss of land cover | Uncontrolled conversion |
Loss of perennials | Overgrazing | |
Loss of tree cover | Overlogging, overharvest | |
Loss of plant diversity | Specialization, markets | |
Skewed tree age distribution | Lack of rejuvenation investment | |
Loss of soil structure, carbon | Over-cropping | |
Function | Reduced primary production | Local climate change, soil fertility loss |
Disturbed hydrology: quantity, quality, timing of river flow; freshwater retention | Local climate change, loss of filter and buffer functions by vegetation | |
Loss of soil retention, downstream sedimentation, landslides | Loss of effective land cover, increased rainfall intensity | |
Spread of uncontrolled fire | Loss of functional fire-breaks | |
Increase of pest, disease, weed pressures | Disturbed ecology and food-webs | |
Services | Loss of harvestable and marketable production (‘provisioning services’) | Loss of productivity, consumer trust in responsible production |
Decline in usable water, increased floods | Disturbed hydrology | |
Loss of net greenhouse gas sequestration | Loss of soil functions, vegetation | |
Loss of human health | Loss of healthy ecosystems | |
Loss of cultural and spiritual value | Loss of respect and recognition | |
Benefits | Loss of local livelihoods | Loss of harvestable/marketable production |
Loss of secure and trusted value chains | Production costs, market prices, loss of trust | |
Loss of existence value of global biodiversity | Awareness of existence and threats | |
Value | Increased resource use conflicts | Lack of rights, lack of law implementation |
Increased inequity and gender inequity | Lack of voice in decisions | |
Loss of options for young people | Land shortage, lack of livelihood options | |
Loss of local ecological knowledge, rules | Lack of attention, respect and rejuvenation |
Options | Interventions in Support of Any Combination of | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Context | Motivation, Local Insti-Tutions | Know-how Tree Soil Management | Rights | Markets Inputs Outputs | Local ES, Human Water Health | Teleconnections: Climate Biodi- versity | |||||
SDG-links | 2,3,4,5,10,16 | 5,10,16 | 4,5,8,17 | 1,2,8,9,12 | 3, 6,7,11 | 13,17 14,15,17 | |||||
FT-stage1: Core forests, low population density, swiddening | Local identity and initiatives, empowered and supported by participation and co-investment by external stakeholders | FGR | National law & local bylaw reform, forest classification and land use rights planning | Nurseries, Tree seed sources | EcoT | Disease vector control, clean water supply, sanitation | Water quantity, regularity of flow (floods/droughts), quality | REDD+ | PA | ||
FT-stage2: e.g., Logged over forests, swiddening | FGR/RIL /CBFM | Logs NTFP | REDD+ | PA | |||||||
FT-stage3: e.g., Mosaic of agriculture, secondary forests, agroforests | CBFM/ AF/TGR | AFP, Plant | REDD+/ NDC | PA | |||||||
FT-stage4: Mosaic of agriculture, secondary forests and plantations | AF/TGR | ISFM | AFP, Plant | NDC | PA | ||||||
FT-stage5: Open-field agriculture | AF/TGR | ISFM | AFP | NDC | PA | ||||||
FT-stage6: Peri-urban, tree cover higher than FT5 | AF/TGR | AFP | NDC | PA | |||||||
Special places: Water towers | Water rights | ||||||||||
Riparian zone & wetlands | RC | ||||||||||
Peat | Palud | Rewet | Drainage rights RC | RC | |||||||
Small islands, Mangroves | Hotel permits | ||||||||||
Transport infrastructure | Land-slides | Development contracts | |||||||||
Mining scars | Permits, RC |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Noordwijk, M.; Gitz, V.; Minang, P.A.; Dewi, S.; Leimona, B.; Duguma, L.; Pingault, N.; Meybeck, A. People-Centric Nature-Based Land Restoration through Agroforestry: A Typology. Land 2020, 9, 251. https://doi.org/10.3390/land9080251
van Noordwijk M, Gitz V, Minang PA, Dewi S, Leimona B, Duguma L, Pingault N, Meybeck A. People-Centric Nature-Based Land Restoration through Agroforestry: A Typology. Land. 2020; 9(8):251. https://doi.org/10.3390/land9080251
Chicago/Turabian Stylevan Noordwijk, Meine, Vincent Gitz, Peter A. Minang, Sonya Dewi, Beria Leimona, Lalisa Duguma, Nathanaël Pingault, and Alexandre Meybeck. 2020. "People-Centric Nature-Based Land Restoration through Agroforestry: A Typology" Land 9, no. 8: 251. https://doi.org/10.3390/land9080251
APA Stylevan Noordwijk, M., Gitz, V., Minang, P. A., Dewi, S., Leimona, B., Duguma, L., Pingault, N., & Meybeck, A. (2020). People-Centric Nature-Based Land Restoration through Agroforestry: A Typology. Land, 9(8), 251. https://doi.org/10.3390/land9080251