Predicting Sustainable Farm Performance—Using Hybrid Structural Equation Modelling with an Artificial Neural Network Approach
Abstract
:1. Introduction
Agriculture in Pakistan
2. Literature Review
2.1. Conservative Agriculture Practices and Adoption
2.2. Factors Affecting the Adoption of CAPs
2.2.1. Farmer Innovativeness (FIN)
2.2.2. Trust on Extension (TOE)
2.2.3. Profit Orientation (POT)
2.2.4. Environmental Attitude (ENA)
2.2.5. Risk-Taking Attitude (RTA)
2.2.6. Performance Expectancy (PEX)
2.2.7. Effort Expectancy (EEX)
2.2.8. Social Influence (SIN)
2.2.9. Facilitating Condition (FCN)
2.2.10. Voluntariness of Use (VOU)
2.2.11. Intention to Adopt CAPs (ITA)
2.2.12. Use of CAPs (UOC)
2.2.13. Sustainable Farm Performance
2.3. Hypotheses Development
2.3.1. Farmer’s Inclination and Intention to Adopt CAPs
2.3.2. CAPs Attributes and Intention to Adopt CAPs
2.3.3. Impacts of Facilitating Conditions, the Voluntariness of Use, and Intention to Adopt CAPs
2.3.4. Impact of Facilitating Conditions, the Voluntariness of Use, and Intention to Adopt CAPs
2.3.5. Moderation Effect of Farmers’ Age
2.3.6. Moderation Effect of Farmers’ Education
2.3.7. Moderation Effect of Farmers’ Experience
2.3.8. Moderation for Voluntariness of Use and Facilitating Conditions on the Use of CAPs
3. Research Methodology
3.1. Study Area and Context
3.2. Data Collection and Sample Selection
3.3. Research Instrument
3.4. Assessment of Common Method Variance (CMV)
3.5. Multivariate Normality
3.6. Data Analysis Method
3.6.1. SmartPLS Analysis
3.6.2. Analysis Using Artificial Neural Network (ANN)
4. Data Analysis
4.1. Descriptive Statistics
4.2. Validity and Reliability
4.3. Hierarchical Model
4.4. Path Analysis
4.5. Moderating Effects
4.6. Importance-Performance Factors
4.7. Analysis from ANN
4.7.1. First Scenario
4.7.2. Second Scenario
4.7.3. Third Scenario
5. Discussion
5.1. Formation of Intention to Use CAPs from Farmers’ Capacities
5.2. Formation of Intention to Use CAPs from CAPs Characteristics
5.3. Moderating Effect of Age, Education, and Experience on the Intention Formation to Use CAPs
5.4. Use of CAPs
5.5. Sustainable Farm Performance
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Analysis Using Artificial Neural Network (ANN)
Appendix A.1. Preliminaries
- Prediction of the intention to use CAP through various criteria.
- Prediction of the actual use of CAP through the intention to use CAP and other criteria.
- Prediction of environmental performance, financial performance, and yield performance as a result of the actual use of CAP.
- (a)
- Sum of Square of Errors (SSE)
- (b)
- Root Mean Square Error (RMSE)
Appendix A.2. Structure of the ANN for the First Scenario
- I plan to use CAPs during the next cropping season. (notation: )
- CAPs are good to use. (notation: )
- I am likely to use CAPs. (notation: )
- I frequently thought about using CAPs. (notation: )
- I like to experiment with new technologies. (notation: )
- I like to try new things. (notation: )
- I improvise the methods for solving problems frequently. (notation: )
- I openly accept new ways of thinking. (notation: )
- I am interested in using new ways of farming. (notation: )
- Agriculture extension services are important sources of information. (notation: )
- Extension services are a trustworthy source of information related to farming practices. (notation: )
- Extension services are a secure system of information for farmers. (notation: )
- Extension services are dependable. (notation: )
- Users can easily access extension services. (notation: )
- It is important to receive the highest possible prices of agriculture products. (notation: )
- It is essential to make the most substantial possible profit from our farming practices. (notation: )
- It is essential to try new ways to increase profit. (notation: )
- The profit margin keeps the interest in farming. (notation: )
- I am willing to reduce consumption to protect the environment. (notation: )
- I am interested in giving my money to help protect wild animals. (notation: )
- Significant political changes are required to protect the environment. (notation: )
- Significant social changes are required to protect the environment. (notation: )
- Humans are severely abusing the environment. (notation: )
- Before applying different farming practices, the practices need to be tested on other farms. (notation: )
- It is important to be attentive when adopting new farming ways. (notation: )
- It is important to avoid risky options in farm decision-making. (notation: )
- Farm investment decision requires careful consideration. (notation: )
- CAPs are useful in farming. (notation: )
- Using CAPs permits farmers to accomplish tasks on time. (notation: )
- Using CAPs helps to increase farm productivity. (notation: )
- Overall, CAPs are effective farming practices. (notation: )
- It would be easy to become skilful in using CAPs. (notation: )
- CAPs are easy to use. (notation: )
- Learning to work with CAPs is easy. (notation: )
- Working with CAPs is flexible. (notation:
- Influencing people around think using CAPs is a must. (notation: )
- The important people around me think that using CAPs is good. (notation: )
- In general, support is available from the community to use CAPs. (notation: )
- Using CAPs is associated with high profile farmers. (notation: )
- Age (notation: ): 1 = below 20, 2 = 20-29, 3 = 30-39, 4 = 40-49, 5 = 50-59, 6 = 60-69, 7 = 70 or over.
- Formal schooling (notation: ): 1 = 1-5 years, 2 = 6-10 years, 3 = college degree, 4 = university degree.
- Years of farming experience (notation: ): 1 = 1-4 years, 2 = 5-10 years, 3: 11-15 years, 4 = 16-20 years, 5 = above 20 years.
- Years of CAPs farming experience (notation: ): 1 = 1-2 Years, 2 = 3-5 years, 3 = 6-10 years, 4 = above 10 years.
Appendix A.3. Structure of the ANN for the Second Scenario
- Your family thinks that you should practice environmentally friendly behaviour. (notation: )
- Your friends think that you should practice environmentally friendly behaviour. (notation: )
- You value the opinion and feelings of your family on your environmentally friendly behaviour. (notation: )
- You value the opinion and feelings of your friends on your environmentally friendly behaviour. (notation: )
- Your family thinks that you should consume environment-friendly products. (notation: )
- You are motivated to practice an environmentally friendly lifestyle. (notation: )
- Your personal philosophy is to do anything to practice an environmentally friendly lifestyle. (notation: )
- You want to promote an environmentally friendly lifestyle for others. (notation: )
Appendix A.4. Structure of the ANN for the Third Scenario
- Usage of CAPs reduces the use of inorganic fertiliser in the farm. (notation: )
- Usage of CAPs reduces water waste in the farm. (notation: )
- Usage of CAPs reduces solid waste in the farm. (notation: )
- Usage of CAPs decreases the consumption of pesticides in the farm. (notation: )
- Usage of CAPs decreases the use of machines that run on petrol. (notation: )
- Usage of CAPs decreases the frequency of accidents in the farm. (notation: )
- Usage of CAPs increases the rice yield per hectare. (notation: )
- Usage of CAPs increases my farm’s income. (notation: )
- Usage of CAPs improves farm’s fertility. (notation: )
- Usage of CAPs restores farm’s nutrients. (notation: )
- Usage of CAPs reduces soil erosion. (notation: )
- Usage of CAPs improves soil aggregation for the farm. (notation: )
- Improve farm capacity utilisation. (notation: )
- Decrease the water cost for farming. (notation: )
- Decrease the labour cost for farming. (notation: )
- Decrease the energy cost for farming. (notation: )
- Improve the efficiency in the farm. (notation: )
- Increase the farm’s profitability. (notation: )
Appendix A.5. The Calibre of the Workstation
FIN | TOE | PO | ENA | RTA | PEX | EEX | SIN | FCN | VOU | BIA | UOC | FSP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FIN-Item 1 | 0.806 | 0.273 | 0.359 | 0.413 | 0.267 | 0.267 | 0.086 | 0.199 | 0.278 | 0.431 | 0.276 | 0.296 | −0.263 |
FIN-Item 2 | 0.789 | 0.290 | 0.256 | 0.400 | 0.356 | 0.275 | 0.353 | 0.224 | 0.303 | 0.239 | 0.243 | 0.263 | −0.191 |
FIN-Item 3 | 0.822 | 0.239 | 0.271 | 0.303 | 0.329 | 0.294 | 0.390 | 0.124 | 0.257 | 0.218 | 0.180 | 0.298 | 0.019 |
FIN-Item 4 | 0.809 | 0.214 | 0.346 | 0.432 | 0.459 | 0.270 | 0.377 | 0.161 | 0.302 | 0.180 | 0.119 | 0.273 | 0.026 |
FIN-Item 5 | 0.077 | 0.217 | 0.312 | 0.227 | 0.403 | 0.264 | 0.369 | −0.092 | −0.074 | 0.270 | 0.140 | 0.260 | 0.125 |
TOE-Item 1 | 0.248 | 0.785 | 0.169 | 0.354 | 0.393 | 0.279 | 0.396 | −0.045 | 0.029 | 0.313 | 0.142 | 0.303 | 0.152 |
TOE-Item 2 | 0.260 | 0.738 | 0.170 | 0.227 | 0.312 | 0.303 | 0.423 | −0.087 | −0.047 | 0.340 | 0.343 | 0.271 | 0.201 |
TOE-Item 3 | 0.177 | 0.685 | 0.205 | 0.272 | 0.365 | 0.306 | 0.376 | 0.123 | 0.329 | 0.294 | 0.288 | 0.251 | 0.094 |
TOE-Item 4 | 0.185 | 0.750 | 0.359 | 0.383 | 0.352 | 0.278 | 0.368 | 0.056 | 0.283 | 0.255 | 0.389 | 0.195 | 0.136 |
TOE-Item 5 | 0.333 | 0.685 | 0.256 | 0.137 | 0.323 | 0.231 | 0.329 | 0.141 | 0.289 | 0.278 | 0.309 | 0.259 | 0.240 |
POT-Item 1 | 0.363 | 0.332 | 0.841 | 0.106 | 0.352 | 0.231 | 0.648 | 0.090 | 0.400 | 0.042 | 0.253 | 0.287 | 0.097 |
POT-Item 2 | 0.335 | 0.295 | 0.762 | 0.092 | 0.428 | 0.273 | 0.686 | 0.088 | 0.409 | 0.093 | 0.207 | 0.348 | −0.002 |
POT-Item 3 | 0.305 | 0.279 | 0.706 | 0.151 | 0.308 | 0.034 | 0.793 | −0.027 | 0.350 | 0.105 | 0.202 | 0.253 | 0.098 |
POT-Item 4 | 0.391 | 0.272 | 0.685 | 0.167 | 0.414 | 0.039 | 0.783 | 0.070 | 0.413 | 0.112 | 0.311 | 0.191 | 0.046 |
ENA-Item 1 | 0.215 | 0.395 | 0.352 | 0.663 | 0.249 | −0.033 | 0.205 | 0.125 | 0.306 | 0.082 | 0.373 | 0.158 | −0.184 |
ENA-Item 2 | 0.287 | 0.364 | 0.279 | 0.792 | 0.401 | 0.072 | 0.219 | 0.222 | 0.415 | 0.069 | 0.371 | 0.133 | −0.067 |
ENA-Item 3 | 0.410 | 0.391 | 0.260 | 0.708 | 0.405 | 0.074 | 0.158 | −0.209 | 0.339 | 0.381 | 0.224 | 0.098 | 0.014 |
ENA-Item 4 | 0.269 | 0.365 | 0.295 | 0.651 | 0.154 | 0.099 | 0.142 | −0.207 | 0.253 | 0.356 | 0.196 | 0.093 | 0.155 |
RTA-Item 1 | 0.207 | 0.270 | 0.300 | 0.437 | 0.689 | 0.001 | 0.217 | 0.155 | 0.283 | 0.338 | 0.167 | 0.103 | 0.165 |
RTA-Item 2 | 0.210 | 0.233 | 0.261 | 0.337 | 0.765 | 0.357 | 0.333 | 0.252 | 0.300 | 0.264 | 0.191 | 0.431 | −0.012 |
RTA-Item 3 | 0.199 | 0.217 | 0.248 | 0.382 | 0.692 | 0.191 | 0.103 | 0.199 | 0.325 | 0.241 | 0.176 | 0.239 | 0.041 |
RTA-Item 4 | 0.151 | 0.337 | 0.247 | 0.441 | 0.735 | 0.168 | 0.093 | 0.224 | 0.331 | 0.194 | 0.191 | 0.218 | 0.221 |
PEX-Item 1 | 0.163 | 0.266 | 0.257 | 0.133 | 0.325 | 0.738 | 0.180 | 0.124 | 0.365 | 0.249 | 0.291 | 0.180 | 0.059 |
PEX-Item 2 | 0.192 | 0.190 | 0.208 | 0.140 | 0.267 | 0.773 | 0.270 | 0.161 | 0.187 | 0.239 | 0.371 | 0.270 | −0.045 |
PEX-Item 3 | 0.350 | 0.189 | 0.168 | 0.117 | 0.219 | 0.753 | 0.218 | −0.092 | 0.157 | 0.191 | 0.324 | 0.313 | 0.090 |
PEX-Item 4 | 0.282 | 0.157 | 0.301 | 0.050 | 0.345 | 0.698 | 0.191 | −0.045 | 0.157 | 0.223 | 0.341 | 0.340 | 0.036 |
EEX-Item 1 | 0.253 | 0.108 | 0.352 | 0.022 | 0.473 | 0.264 | 0.648 | −0.087 | 0.140 | 0.255 | 0.362 | 0.294 | 0.176 |
EEX-Item 2 | 0.138 | 0.113 | 0.181 | 0.083 | 0.542 | 0.237 | 0.686 | 0.123 | 0.115 | 0.296 | 0.213 | 0.255 | 0.041 |
EEX-Item 3 | 0.292 | 0.154 | 0.219 | 0.329 | 0.465 | 0.360 | 0.793 | 0.056 | 0.142 | 0.312 | 0.172 | 0.278 | 0.101 |
EEX-Item 4 | 0.248 | 0.321 | 0.198 | 0.410 | 0.420 | 0.365 | 0.783 | 0.141 | 0.400 | 0.280 | 0.154 | 0.042 | 0.062 |
SIN-Item 1 | 0.260 | 0.391 | 0.161 | 0.323 | 0.367 | 0.375 | 0.205 | 0.835 | 0.409 | 0.303 | 0.187 | 0.093 | 0.789 |
SIN-Item 2 | 0.177 | 0.241 | 0.198 | 0.243 | 0.325 | 0.454 | 0.219 | 0.743 | 0.350 | 0.264 | 0.266 | 0.105 | 0.110 |
SIN-Item 3 | 0.185 | 0.222 | 0.229 | 0.328 | 0.237 | 0.402 | 0.158 | 0.822 | 0.413 | 0.214 | 0.120 | 0.112 | 0.066 |
SIN-Item 4 | 0.333 | 0.290 | 0.160 | 0.334 | 0.403 | 0.394 | 0.142 | 0.824 | 0.306 | 0.368 | 0.156 | 0.082 | 0.072 |
FCN-Item 1 | 0.363 | 0.372 | 0.307 | 0.352 | 0.417 | 0.304 | 0.130 | 0.230 | 0.623 | 0.206 | 0.195 | 0.069 | −0.263 |
FCN-Item 2 | 0.335 | 0.393 | 0.192 | 0.392 | 0.048 | 0.396 | 0.140 | 0.234 | 0.775 | 0.235 | 0.191 | 0.381 | −0.191 |
FCN-Item 3 | 0.305 | 0.388 | 0.211 | 0.363 | 0.046 | 0.377 | 0.387 | 0.256 | 0.725 | 0.247 | 0.119 | 0.356 | 0.019 |
FCN-Item 4 | 0.391 | 0.384 | 0.177 | 0.456 | 0.023 | 0.471 | 0.349 | 0.262 | 0.689 | 0.274 | 0.118 | 0.338 | 0.026 |
FCN-Item 5 | 0.215 | 0.457 | 0.359 | −0.003 | −0.022 | 0.455 | 0.259 | 0.281 | 0.773 | 0.431 | 0.231 | 0.264 | 0.125 |
VOU-Item 1 | 0.287 | 0.064 | 0.256 | 0.008 | −0.018 | 0.228 | 0.286 | 0.209 | 0.400 | 0.781 | 0.281 | 0.241 | 0.152 |
VOU-Item 2 | 0.410 | 0.101 | 0.271 | 0.062 | 0.026 | 0.251 | 0.326 | 0.156 | 0.409 | 0.819 | 0.230 | 0.194 | 0.201 |
VOU-Item 3 | 0.269 | 0.118 | 0.346 | 0.089 | 0.358 | 0.236 | 0.249 | 0.248 | 0.350 | 0.791 | 0.328 | 0.296 | 0.094 |
ITA-Item 1 | 0.207 | 0.119 | 0.312 | 0.008 | 0.360 | 0.203 | 0.341 | 0.171 | 0.413 | 0.296 | 0.803 | 0.263 | 0.136 |
ITA-Item 2 | 0.210 | 0.065 | 0.169 | 0.022 | 0.285 | 0.151 | 0.362 | 0.234 | 0.306 | 0.263 | 0.849 | 0.298 | 0.240 |
ITA-Item 3 | 0.199 | 0.086 | 0.170 | 0.476 | 0.200 | 0.212 | 0.368 | 0.225 | 0.415 | 0.298 | 0.817 | 0.273 | 0.097 |
ITA-Item 4 | 0.151 | 0.333 | 0.205 | 0.429 | 0.238 | 0.431 | 0.345 | 0.298 | 0.339 | 0.273 | 0.870 | 0.260 | −0.002 |
UOC-Item 1 | 0.163 | 0.363 | 0.231 | 0.382 | 0.357 | 0.321 | 0.094 | 0.286 | 0.253 | 0.260 | 0.264 | 1.000 | 0.098 |
SFP-Item 1 | 0.192 | 0.339 | 0.154 | 0.357 | 0.399 | 0.258 | 0.106 | 0.150 | 0.283 | 0.303 | 0.237 | 0.352 | 0.931 |
SFP-Item 2 | 0.350 | 0.376 | 0.139 | 0.316 | 0.434 | 0.215 | 0.155 | 0.157 | 0.300 | 0.271 | 0.360 | 0.279 | 0.942 |
SFP-Item 3 | 0.282 | 0.366 | 0.279 | 0.279 | 0.365 | 0.312 | 0.154 | 0.154 | 0.325 | 0.251 | 0.365 | 0.260 | 0.943 |
SFP-Item 4 | 0.253 | 0.265 | 0.287 | 0.206 | 0.389 | 0.388 | 0.083 | 0.155 | 0.331 | 0.195 | 0.375 | 0.295 | 0.953 |
SFP-Item 5 | 0.138 | 0.241 | 0.218 | 0.301 | −0.066 | 0.374 | 0.110 | 0.145 | 0.365 | 0.259 | 0.454 | 0.300 | 0.948 |
SFP-Item 6 | 0.292 | 0.382 | 0.283 | 0.520 | −0.038 | 0.399 | 0.450 | 0.186 | 0.187 | 0.287 | 0.402 | 0.261 | 0.950 |
Fornell & Larker criterion | |||||||||||||
FIN | 0.801 | ||||||||||||
TOE | 0.505 | 0.730 | |||||||||||
POT | 0.391 | 0.419 | 0.751 | ||||||||||
ENA | 0.481 | 0.506 | 0.368 | 0.709 | |||||||||
RTA | 0.484 | 0.461 | 0.721 | 0.650 | 0.721 | ||||||||
PEX | 0.498 | 0.481 | 0.499 | 0.551 | 0.499 | 0.741 | |||||||
EEX | 0.414 | 0.364 | 0.478 | 0.537 | 0.478 | 0.582 | 0.730 | ||||||
SIN | 0.299 | 0.285 | 0.286 | 0.298 | 0.268 | 0.449 | 0.359 | 0.807 | |||||
FCN | 0.378 | 0.414 | 0.405 | 0.461 | 0.405 | 0.437 | 0.451 | 0.349 | 0.719 | ||||
VOU | 0.369 | 0.354 | 0.309 | 0.367 | 0.337 | 0.446 | 0.393 | 0.356 | 0.381 | 0.797 | |||
ITA | 0.258 | 0.352 | 0.355 | 0.422 | 0.346 | 0.371 | 0.446 | 0.295 | 0.470 | 0.339 | 0.835 | ||
UOC | 0.354 | 0.376 | 0.358 | 0.332 | 0.234 | 0.414 | 0.345 | 0.356 | 0.318 | 0.274 | 0.393 | 1.00 | |
SFP | 0.166 | 0.789 | 0.190 | 0.049 | −0.014 | 0.180 | 0.134 | 0.145 | 0.124 | 0.102 | 0.165 | 0.789 | 0.952 |
HTMT Ratio table | |||||||||||||
FIN | |||||||||||||
TOE | 0.578 | ||||||||||||
POT | 0.482 | 0.544 | |||||||||||
ENA | 0.590 | 0.634 | 0.496 | ||||||||||
RTA | 0.622 | 0.615 | 0.588 | 0.882 | |||||||||
PEX | 0.620 | 0.625 | 0.732 | 0.496 | 0.685 | ||||||||
EEX | 0.516 | 0.458 | 0.482 | 0.736 | 0.680 | 0.806 | |||||||
SIN | 0.351 | 0.351 | 0.462 | 0.383 | 0.387 | 0.581 | 0.467 | ||||||
FCN | 0.452 | 0.523 | 0.387 | 0.582 | 0.532 | 0.566 | 0.603 | 0.438 | |||||
VOU | 0.504 | 0.463 | 0.472 | 0.490 | 0.472 | 0.616 | 0.548 | 0.464 | 0.504 | ||||
ITA | 0.290 | 0.406 | 0.446 | 0.506 | 0.439 | 0.451 | 0.550 | 0.337 | 0.581 | 0.434 | |||
UOC | 0.383 | 0.421 | 0.416 | 0.378 | 0.273 | 0.470 | 0.419 | 0.347 | 0.355 | 0.322 | 0.421 | ||
SFP | 0.177 | 0.173 | 0.220 | 0.077 | 0.181 | 0.202 | 0.178 | 0.154 | 0.139 | 0.121 | 0.173 | 0.789 |
Feedback | M1 | M2 | M3 | M4 | M5 | N1 | N2 | N3 | N4 | N5 | P1 | P2 | P3 | P4 | Q1 | Q2 | Q3 | Q4 | Q5 | R1 |
a b | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
1 | 0.150 | 0.044 | −0.233 | −0.024 | −0.029 | 0.131 | 0.108 | −0.039 | −0.079 | 0.038 | 0.175 | 0.020 | −0.140 | −0.019 | 0.006 | 0.259 | 0.030 | −0.011 | 0.038 | −0.093 |
2 | 0.089 | 0.041 | −0.068 | −0.045 | 0.044 | 0.051 | 0.083 | −0.005 | 0.010 | −0.004 | 0.016 | 0.035 | 0.085 | −0.036 | 0.051 | 0.098 | 0.060 | −0.031 | −0.061 | 0.035 |
3 | 0.040 | −0.043 | 0.028 | 0.045 | 0.020 | 0.063 | −0.018 | 0.098 | 0.033 | −0.060 | 0.043 | 0.004 | 0.091 | −0.003 | −0.003 | 0.123 | 0.000 | −0.030 | 0.021 | 0.031 |
4 | 0.149 | 0.009 | −0.153 | −0.030 | 0.048 | 0.075 | 0.135 | −0.071 | −0.040 | 0.043 | 0.174 | −0.020 | −0.038 | −0.030 | 0.051 | 0.194 | 0.011 | −0.009 | −0.143 | 0.058 |
5 | 0.090 | −0.070 | 0.035 | 0.003 | 0.004 | 0.049 | 0.180 | −0.103 | 0.065 | −0.020 | 0.005 | 0.031 | 0.091 | −0.028 | 0.025 | 0.040 | 0.015 | 0.085 | −0.001 | −0.034 |
6 | 0.086 | 0.026 | −0.053 | −0.018 | 0.030 | 0.043 | 0.083 | 0.030 | −0.018 | 0.008 | 0.098 | 0.013 | −0.038 | 0.005 | 0.008 | 0.043 | 0.090 | 0.038 | 0.020 | 0.028 |
7 | 0.103 | −0.013 | −0.061 | −0.076 | 0.050 | 0.160 | 0.073 | 0.061 | −0.086 | −0.013 | 0.053 | −0.040 | 0.128 | −0.093 | 0.083 | 0.168 | 0.006 | −0.104 | −0.020 | 0.118 |
8 | 0.083 | −0.034 | −0.031 | −0.003 | −0.013 | 0.080 | 0.150 | −0.043 | 0.060 | −0.035 | 0.038 | 0.010 | 0.110 | −0.050 | 0.018 | 0.128 | 0.023 | −0.013 | 0.020 | 0.002 |
9 | 0.105 | −0.008 | −0.025 | −0.035 | 0.060 | 0.038 | 0.095 | −0.008 | 0.005 | 0.008 | 0.080 | 0.005 | −0.005 | 0.010 | 0.023 | 0.093 | 0.035 | −0.003 | −0.010 | 0.048 |
10 | 0.048 | 0.002 | −0.018 | −0.038 | 0.030 | 0.093 | 0.110 | 0.002 | 0.005 | −0.028 | 0.015 | 0.038 | 0.090 | −0.040 | 0.053 | 0.068 | 0.065 | 0.005 | 0.018 | −0.025 |
11 | −0.003 | −0.013 | 0.005 | 0.103 | 0.007 | 0.038 | 0.083 | 0.025 | 0.013 | −0.033 | 0.040 | 0.025 | 0.093 | 0.005 | −0.023 | 0.133 | −0.080 | 0.045 | −0.023 | 0.010 |
12 | 0.115 | −0.003 | −0.010 | −0.070 | 0.013 | 0.025 | 0.123 | −0.013 | 0.013 | 0.010 | 0.093 | −0.018 | −0.008 | 0.015 | 0.043 | 0.038 | 0.060 | 0.040 | 0.010 | 0.023 |
13 | 0.068 | −0.028 | 0.013 | −0.010 | 0.033 | 0.055 | 0.085 | 0.020 | 0.023 | −0.038 | 0.025 | 0.025 | 0.093 | −0.033 | 0.008 | 0.100 | 0.040 | −0.008 | 0.040 | −0.013 |
14 | 0.095 | 0.007 | −0.020 | 0.035 | 0.015 | −0.003 | 0.070 | −0.023 | 0.018 | 0.043 | 0.060 | 0.010 | 0.005 | 0.058 | −0.020 | 0.070 | −0.020 | 0.090 | −0.043 | 0.010 |
15 | 0.040 | −0.003 | −0.010 | 0.010 | 0.018 | 0.100 | 0.045 | 0.030 | 0.023 | −0.033 | 0.013 | 0.093 | 0.028 | −0.025 | 0.000 | 0.035 | 0.100 | −0.035 | 0.055 | 0.038 |
16 | 0.000 | 0.103 | −0.045 | −0.033 | 0.000 | 0.078 | 0.100 | 0.008 | −0.045 | 0.033 | 0.028 | 0.023 | 0.110 | −0.033 | 0.025 | 0.165 | −0.025 | −0.003 | −0.035 | 0.020 |
Feedback | R2 | R3 | R4 | S1 | S2 | S3 | S4 | T1 | T2 | T3 | T4 | U1 | U2 | U3 | U4 | Λ1 | Λ2 | Λ3 | Λ4 | 1 |
a b | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
1 | 0.058 | −0.078 | 0.105 | −0.149 | 0.161 | −0.073 | 0.193 | −0.091 | 0.125 | 0.053 | 0.066 | −0.061 | −0.069 | 0.160 | 0.041 | −0.069 | 0.119 | 0.038 | −0.168 | 0.284 |
2 | 0.078 | −0.058 | 0.095 | −0.045 | 0.108 | −0.021 | 0.114 | −0.076 | 0.044 | 0.054 | 0.059 | −0.024 | −0.041 | 0.103 | 0.040 | −0.023 | 0.073 | 0.046 | −0.071 | 0.128 |
3 | 0.053 | 0.003 | 0.050 | −0.030 | 0.028 | −0.014 | 0.089 | −0.028 | 0.110 | 0.030 | 0.028 | 0.035 | −0.065 | −0.020 | 0.133 | −0.010 | 0.043 | 0.015 | −0.015 | 0.103 |
4 | 0.133 | −0.088 | 0.153 | −0.066 | 0.075 | −0.064 | 0.210 | −0.140 | 0.046 | 0.004 | 0.130 | 0.008 | −0.060 | 0.114 | 0.038 | −0.041 | 0.088 | 0.011 | −0.074 | 0.185 |
5 | 0.073 | −0.015 | 0.048 | 0.018 | 0.088 | −0.068 | 0.103 | −0.013 | 0.015 | 0.038 | 0.043 | −0.009 | 0.011 | 0.070 | 0.028 | 0.008 | 0.033 | 0.065 | −0.113 | 0.201 |
6 | 0.028 | −0.055 | 0.085 | −0.050 | 0.048 | −0.018 | 0.128 | −0.068 | 0.098 | −0.049 | 0.111 | 0.065 | −0.045 | 0.063 | 0.018 | 0.000 | 0.058 | 0.023 | −0.030 | 0.098 |
7 | 0.060 | −0.015 | 0.118 | −0.128 | 0.064 | −0.064 | 0.004 | 0.064 | 0.105 | 0.033 | 0.048 | 0.020 | −0.050 | 0.023 | 0.085 | −0.008 | 0.040 | 0.040 | −0.046 | 0.123 |
8 | 0.043 | −0.010 | 0.030 | 0.013 | 0.070 | −0.053 | 0.128 | −0.035 | 0.018 | 0.048 | 0.070 | −0.018 | −0.065 | 0.083 | 0.100 | −0.025 | 0.028 | 0.095 | −0.090 | 0.115 |
9 | 0.043 | −0.013 | 0.068 | −0.018 | 0.058 | −0.020 | 0.065 | −0.010 | 0.060 | −0.013 | 0.073 | 0.058 | −0.043 | 0.023 | 0.068 | −0.003 | 0.033 | 0.023 | −0.025 | 0.103 |
10 | 0.048 | −0.040 | 0.058 | 0.035 | −0.005 | 0.008 | 0.125 | −0.033 | 0.033 | 0.058 | 0.043 | −0.053 | 0.015 | 0.043 | 0.100 | −0.015 | 0.053 | 0.070 | −0.095 | 0.113 |
11 | 0.068 | 0.050 | 0.060 | −0.043 | 0.088 | −0.100 | 0.130 | −0.050 | 0.045 | 0.073 | 0.095 | −0.013 | −0.068 | −0.023 | 0.180 | −0.008 | −0.048 | 0.053 | −0.018 | 0.123 |
12 | 0.010 | −0.035 | 0.080 | 0.020 | 0.030 | 0.035 | 0.088 | −0.060 | 0.013 | 0.008 | 0.110 | 0.020 | −0.010 | 0.108 | −0.023 | −0.023 | 0.070 | 0.053 | −0.168 | 0.295 |
13 | 0.040 | −0.003 | 0.050 | 0.008 | 0.025 | −0.005 | 0.083 | −0.005 | 0.043 | 0.048 | 0.038 | −0.033 | −0.013 | 0.073 | 0.050 | 0.003 | 0.038 | 0.050 | −0.053 | 0.120 |
14 | 0.048 | 0.008 | 0.085 | −0.040 | 0.093 | −0.033 | 0.105 | −0.013 | −0.023 | −0.010 | 0.120 | 0.050 | −0.015 | 0.058 | 0.007 | −0.002 | 0.023 | 0.043 | −0.073 | 0.168 |
15 | 0.043 | −0.035 | 0.002 | 0.075 | −0.003 | −0.005 | 0.090 | −0.030 | 0.098 | 0.040 | 0.020 | 0.000 | −0.030 | 0.108 | 0.008 | −0.005 | 0.070 | 0.038 | −0.063 | 0.120 |
16 | 0.070 | −0.035 | 0.113 | −0.043 | 0.060 | −0.080 | 0.113 | −0.015 | 0.068 | 0.065 | 0.050 | −0.005 | −0.058 | 0.115 | 0.018 | −0.015 | 0.033 | 0.035 | −0.033 | 0.110 |
Feedback | b c | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |||
A1 | 1 | 0.019 | 0.088 | 0.119 | 0.131 | 0.325 | −0.606 | 0.194 | 0.375 | −0.263 | −0.019 | 0.456 | −0.094 | 0.275 | −0.231 | −0.019 | 0.219 | |||
A2 | 2 | 0.081 | −0.200 | 0.206 | 0.300 | −0.250 | 0.138 | 0.188 | −0.019 | 0.231 | 0.088 | 0.025 | −0.063 | 0.125 | −0.119 | 0.269 | 0.013 | |||
A3 | 3 | 0.188 | 0.200 | −0.238 | 0.100 | −0.044 | 0.188 | 0.031 | 0.213 | −0.275 | 0.519 | −0.294 | 0.181 | 0.219 | −0.325 | 0.344 | −0.025 | |||
A4 | 4 | 0.138 | 0.175 | −0.163 | 0.175 | −0.106 | 0.225 | 0.088 | −0.106 | 0.288 | 0.038 | −0.031 | 0.175 | −0.200 | 0.344 | −0.156 | 0.156 | |||
Sample Size, N = 336 | ||||||||||||||||||||
SSE = 291.25 | ||||||||||||||||||||
RMSE = 0.931 | ||||||||||||||||||||
Average Synaptic Weight = 0.01805 | ||||||||||||||||||||
Relative Sensitivity of 8 Factors | ||||||||||||||||||||
FIN | TOE | POT | ENA | RTA | PEX | EEX | SIN | |||||||||||||
0.706 | 0.832 | 0.600 | 0.919 | 0.561 | 1.000 | 0.607 | 0.621 |
Feedback | F1 | F2 | F3 | F4 | F5 | V1 | V2 | V3 | A1 | A2 | A3 | A4 | 1 |
a b | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 1 | 2 | 3 | 4 | 5 |
1 | 0.090 | −0.050 | 0.293 | −0.160 | 0.190 | −0.043 | 0.327 | 0.037 | 0.300 | −0.342 | 0.325 | −0.085 | 0.346 |
2 | 0.285 | −0.081 | 0.149 | −0.384 | 0.646 | −0.276 | −0.058 | 0.355 | 0.344 | −0.455 | 0.623 | −0.152 | 0.925 |
3 | −0.048 | −0.050 | 0.360 | −0.580 | 0.458 | −0.145 | 0.187 | 0.203 | 0.454 | −0.502 | 0.350 | −0.026 | 0.288 |
4 | 0.069 | 0.045 | 0.138 | 0.024 | 0.101 | 0.007 | 0.116 | 0.091 | 0.135 | −0.005 | 0.147 | 0.002 | 0.162 |
5 | 0.077 | 0.077 | 0.054 | 0.077 | 0.100 | 0.069 | 0.092 | 0.069 | 0.092 | 0.031 | 0.092 | 0.077 | 0.232 |
6 | −0.061 | −0.032 | 0.234 | −0.028 | 0.096 | −0.021 | 0.231 | 0.064 | 0.154 | −0.091 | 0.184 | 0.033 | 0.181 |
7 | 0.041 | 0.076 | 0.115 | 0.040 | 0.109 | 0.054 | 0.091 | 0.085 | 0.125 | 0.029 | 0.092 | 0.062 | 0.206 |
8 | 0.077 | 0.016 | 0.088 | 0.015 | 0.128 | 0.049 | 0.104 | 0.076 | 0.113 | 0.032 | 0.094 | 0.062 | 0.133 |
9 | 0.115 | 0.031 | 0.046 | 0.177 | 0.017 | 0.077 | 0.077 | 0.075 | 0.085 | 0.069 | 0.077 | 0.077 | 0.189 |
10 | 0.030 | 0.058 | 0.096 | 0.033 | 0.115 | 0.044 | 0.108 | 0.083 | 0.092 | 0.050 | 0.077 | 0.062 | 0.196 |
11 | 0.052 | 0.063 | 0.104 | 0.002 | 0.117 | 0.037 | 0.104 | 0.079 | 0.099 | 0.036 | 0.088 | 0.087 | 0.104 |
12 | 0.077 | 0.077 | 0.077 | 0.092 | 0.077 | 0.062 | 0.069 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.138 |
13 | 0.058 | 0.065 | 0.085 | 0.058 | 0.088 | 0.073 | 0.081 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 |
14 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.105 |
15 | 0.056 | 0.077 | 0.085 | 0.069 | 0.077 | 0.069 | 0.092 | 0.073 | 0.092 | 0.058 | 0.079 | 0.069 | 0.237 |
16 | 0.140 | 0.083 | 0.080 | 0.121 | 0.052 | 0.191 | −0.045 | 0.133 | 0.001 | 0.248 | −0.055 | 0.113 | 0.000 |
Feedback | b c | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||
γ | 1 | 0.019 | 0.088 | 0.119 | 0.131 | 0.325 | −0.606 | 0.194 | 0.375 | ||||
Feedback | b c | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | ||||
γ | 1 | −0.263 | −0.019 | 0.456 | −0.094 | 0.275 | −0.231 | −0.019 | 0.219 | ||||
Sample Size, n = 336 | |||||||||||||
SSE = 196.04 | |||||||||||||
RMSE = 0.764 | |||||||||||||
Average Synaptic Weight = 0.08331 | |||||||||||||
Relative Sensitivity of Two Factors | |||||||||||||
FCN | ITA | ||||||||||||
1.000 | 0.809 |
Feedback | γ | 1 | Feedback | γ | 1 | Feedback | γ | 1 | Feedback | γ | 1 | Feedback | γ | 1 | |||||
a b | 1 | 2 | a b | 1 | 2 | a b | 1 | 2 | a b | 1 | 2 | a b | 1 | 2 | |||||
1 | 0.650 | 0.900 | 8 | 0.700 | 0.700 | 15 | 0.700 | 0.700 | 22 | 0.700 | 0.700 | 29 | 0.700 | 0.300 | |||||
2 | 0.650 | 1.100 | 9 | 0.700 | 0.700 | 16 | 0.700 | 0.700 | 23 | 0.600 | 0.750 | 30 | 0.700 | 0.700 | |||||
3 | 0.600 | 0.900 | 10 | 0.700 | 0.700 | 17 | 0.700 | 0.700 | 24 | 0.800 | 0.650 | 31 | 0.700 | 0.700 | |||||
4 | 0.700 | 0.700 | 11 | 0.700 | 0.700 | 18 | 0.700 | 0.700 | 25 | 0.700 | 0.700 | 32 | 0.700 | 0.700 | |||||
5 | 0.700 | 0.700 | 12 | 0.700 | 0.700 | 19 | 0.700 | 0.700 | 26 | 0.700 | 0.700 | ||||||||
6 | 0.700 | 0.700 | 13 | 0.700 | 0.700 | 20 | 0.700 | 0.700 | 27 | 0.700 | 0.700 | ||||||||
7 | 0.700 | 0.700 | 14 | 0.700 | 0.700 | 21 | 0.700 | 0.700 | 28 | 0.700 | 0.300 | ||||||||
Feedback | b c | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
G1 | 1 | 0.156 | −0.125 | 0.075 | 0.060 | 0.040 | 0.036 | 0.044 | 0.042 | 0.033 | 0.033 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.036 |
G2 | 2 | 0.053 | 0.028 | 0.013 | 0.075 | 0.031 | 0.049 | 0.028 | 0.036 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.036 | 0.033 | 0.044 | 0.042 |
G3 | 3 | 0.046 | 0.031 | 0.039 | 0.038 | 0.039 | 0.039 | 0.039 | 0.028 | 0.047 | 0.039 | 0.039 | 0.050 | 0.028 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 |
G4 | 4 | 0.031 | 0.047 | 0.050 | 0.031 | 0.036 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 |
G5 | 5 | 0.031 | 0.047 | 0.032 | 0.046 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 |
G6 | 6 | 0.033 | 0.044 | 0.050 | 0.028 | 0.039 | 0.039 | 0.039 | 0.050 | 0.025 | 0.042 | 0.039 | 0.039 | 0.044 | 0.036 | 0.039 | 0.033 | 0.039 | 0.039 |
H1 | 7 | 0.018 | 0.111 | 0.064 | 0.013 | 0.039 | 0.039 | 0.039 | 0.042 | 0.036 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 |
H2 | 8 | 0.004 | 0.150 | 0.181 | −0.126 | 0.042 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.044 | 0.033 | 0.033 |
H3 | 9 | 0.000 | 0.200 | 0.122 | −0.119 | 0.043 | 0.040 | 0.039 | 0.036 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.042 | 0.042 |
H4 | 10 | 0.025 | 0.106 | 0.206 | −0.117 | 0.044 | 0.031 | 0.044 | 0.036 | 0.039 | 0.036 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 |
H5 | 11 | 0.033 | 0.047 | 0.036 | 0.042 | 0.039 | 0.036 | 0.040 | 0.040 | 0.039 | 0.036 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 |
H6 | 12 | 0.069 | 0.061 | 0.019 | 0.058 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.028 | 0.050 | 0.039 |
K1 | 13 | 0.058 | 0.081 | 0.156 | −0.069 | 0.036 | 0.033 | 0.042 | 0.036 | 0.042 | 0.036 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.036 | 0.039 | 0.039 |
K2 | 14 | 0.033 | 0.050 | 0.031 | 0.042 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 |
K3 | 15 | 0.033 | 0.047 | 0.036 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.044 | 0.033 | 0.044 | 0.033 |
K4 | 16 | 0.019 | 0.133 | 0.075 | −0.019 | 0.039 | 0.039 | 0.039 | 0.036 | 0.042 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.036 | 0.042 | 0.039 |
K5 | 17 | −0.058 | 0.236 | 0.175 | −0.008 | −0.036 | −0.028 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.036 | 0.033 | 0.044 | 0.042 |
K6 | 18 | −0.017 | 0.147 | 0.089 | −0.014 | 0.039 | 0.039 | 0.050 | 0.036 | 0.033 | 0.036 | 0.044 | 0.042 | 0.036 | 0.033 | 0.042 | 0.039 | 0.039 | 0.036 |
Feedback | b c | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
G1 | 1 | 0.039 | 0.039 | 0.039 | 0.089 | −0.078 | 0.144 | −0.022 | 0.033 | −0.115 | 0.215 | 0.210 | −0.115 | 0.064 | 0.058 | 0.067 | −0.317 | 0.015 | 0.315 |
G2 | 2 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.038 | 0.038 | 0.033 | 0.044 | 0.039 | 0.036 | 0.068 | −0.042 | 0.038 | 0.053 |
G3 | 3 | 0.036 | 0.039 | 0.036 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.036 | 0.036 | 0.033 | 0.039 | 0.033 | 0.036 | 0.000 | 0.103 | 0.004 | 0.026 |
G4 | 4 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.033 | 0.039 | 0.038 | 0.043 | 0.033 | 0.044 | 0.039 | 0.043 | 0.021 | 0.031 | 0.040 | 0.018 |
G5 | 5 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.033 | 0.039 | 0.046 | 0.032 | 0.033 | 0.044 | 0.039 | 0.047 | 0.008 | 0.039 | 0.042 | 0.017 |
G6 | 6 | 0.039 | 0.039 | 0.033 | 0.039 | 0.039 | 0.039 | 0.036 | 0.033 | 0.050 | 0.028 | 0.033 | 0.044 | 0.044 | 0.056 | 0.006 | 0.050 | 0.028 | 0.017 |
H1 | 7 | 0.039 | 0.039 | 0.039 | −0.011 | 0.156 | −0.067 | 0.100 | 0.039 | 0.083 | 0.033 | −0.011 | 0.044 | 0.038 | 0.017 | 0.006 | 0.104 | 0.013 | 0.010 |
H2 | 8 | 0.044 | 0.039 | 0.039 | −0.047 | 0.239 | −0.142 | 0.142 | 0.039 | 0.111 | −0.042 | −0.033 | 0.103 | 0.038 | −0.006 | 0.019 | 0.121 | 0.015 | −0.001 |
H3 | 9 | 0.039 | 0.033 | 0.039 | −0.022 | 0.194 | −0.100 | 0.106 | 0.039 | 0.089 | 0.069 | −0.142 | 0.122 | 0.036 | −0.019 | 0.022 | 0.167 | −0.018 | 0.004 |
H4 | 10 | 0.038 | 0.036 | 0.042 | −0.035 | 0.214 | −0.119 | 0.144 | 0.019 | 0.106 | −0.036 | −0.039 | 0.108 | 0.040 | 0.022 | 0.008 | 0.121 | 0.019 | −0.019 |
H5 | 11 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.033 | 0.039 | 0.044 | 0.033 | 0.033 | 0.044 | 0.039 | 0.042 | 0.014 | 0.067 | 0.029 | −0.001 |
H6 | 12 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.033 | 0.031 | 0.033 | 0.039 | 0.033 | 0.042 | 0.019 | 0.075 | 0.014 | 0.022 |
K1 | 13 | 0.039 | 0.036 | 0.036 | −0.017 | 0.161 | −0.072 | 0.103 | 0.033 | 0.089 | −0.017 | −0.056 | 0.122 | 0.039 | 0.008 | 0.022 | 0.133 | 0.010 | −0.013 |
K2 | 14 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.033 | 0.039 | 0.036 | 0.033 | 0.033 | 0.039 | 0.033 | 0.042 | 0.025 | 0.064 | 0.029 | 0.010 |
K3 | 15 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.033 | 0.039 | 0.044 | 0.033 | 0.033 | 0.044 | 0.039 | 0.042 | 0.014 | 0.067 | 0.029 | −0.001 |
K4 | 16 | 0.039 | 0.039 | 0.039 | 0.011 | 0.100 | −0.017 | 0.072 | 0.039 | 0.067 | 0.053 | −0.033 | 0.064 | 0.044 | 0.019 | 0.011 | 0.114 | 0.003 | −0.008 |
K5 | 17 | 0.039 | 0.039 | 0.094 | 0.042 | 0.042 | −0.011 | 0.042 | 0.044 | 0.081 | −0.025 | 0.003 | 0.072 | 0.064 | 0.000 | −0.047 | 0.264 | 0.053 | −0.142 |
K6 | 18 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.033 | 0.039 | 0.067 | 0.008 | 0.011 | 0.086 | 0.017 | −0.008 | −0.014 | 0.197 | 0.058 | −0.078 |
Sample Size, n = 336 | |||||||||||||||||||
SSE = 139.222 | |||||||||||||||||||
RMSE = 0.644 | |||||||||||||||||||
Average Synaptic Weight = 0.10461 |
References
- Ma, W.; Abdulai, A. IPM adoption, cooperative membership and farm economic performance: Insight from apple farmers in China. China Agric. Econ. Rev. 2018, 8, 2–21. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Sustainable intensification of china’s agroecosystems by conservation agriculture. Int. Soil Water Conserv. Res. 2018, 6, 1–12. [Google Scholar] [CrossRef]
- Khatri-Chhetri, A.; Aggarwal, P.K.; Joshi, P.K.; Vyas, S. Farmers’ prioritisation of climate-smart agriculture (CSA) technologies. Agric. Syst. 2017, 151, 184–191. [Google Scholar] [CrossRef]
- UNFAO (Food and Agriculture Organization of the United Nations). The Future of Food and Agriculture—Alternative Pathways to 2050. 2018. Available online: http://www.fao.org/3/CA1553EN/ca1553en.pdf (accessed on 6 August 2019).
- Morris, W.; Henley, A.; Dowell, D. Farm diversification, entrepreneurship and technology adoption: Analysis of upland farmers in wales. J. Rural Stud. 2017, 53, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Price, L.L.; Palis, F.G. Bringing farmer knowledge and learning into agricultural research: How agricultural anthropologists transformed strategic research at the international rice research institute. Cult. Agric. Food Environ. 2016, 38, 123–130. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of conservation agriculture. Int. J. Environ. Stud. 2018, 1–23. [Google Scholar] [CrossRef]
- Bukchin, S.; Kerret, D. Food for hope: The role of personal resources in farmers’ adoption of green technology. Sustainability 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Fisher, M.; Holden, S.T.; Thierfelder, C.; Katengeza, S.P. Awareness and adoption of conservation agriculture in Malawi: What difference can farmer-to-farmer extension make? Int. J. Agric. Sustain. 2018, 16, 310–325. [Google Scholar] [CrossRef]
- Ali, A.; Hussain, I.; Rahut, D.B.; Erenstein, O. Laser-land levelling adoption and its impact on water use, crop yields and household income: Empirical evidence from the rice-wheat system of Pakistan Punjab. Food Policy 2018, 77, 19–32. [Google Scholar] [CrossRef]
- MOF. Economic Survey of Pakistan 2018–19; MOF: Islamabad, Pakistan, 2019. [Google Scholar]
- Zulfiqar, F.; Thapa, G.B. Agricultural sustainability assessment at provincial level in Pakistan. Land Use Policy 2017, 68, 492–502. [Google Scholar] [CrossRef]
- GOP. Subsidies for Farmers; Agriculture Department: Punjab, Lahore, Pakistan, 2016. Available online: http://www.ofwm.agripunjab.gov.pk/info_subsidies (accessed on 20 August 2019).
- Ahmad, M.-u.-D.; Masih, I.; Giordano, M. Constraints and opportunities for water savings and increasing productivity through resource conservation technologies in Pakistan. Agric. Ecosyst. Environ. 2014, 187, 106–115. [Google Scholar] [CrossRef]
- Abid, M.; Ngaruiya, G.; Scheffran, J.; Zulfiqar, F. The role of social networks in agricultural adaptation to climate change: Implications for sustainable agriculture in Pakistan. Climate 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Aubert, B.A.; Schroeder, A.; Grimaudo, J. It as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decis. Support Syst. 2012, 54, 510–520. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Zhang, X.; Lu, J.; Wu, L.; Yin, S. Adoption behaviour of green control techniques by family farms in China: Evidence from 676 family farms in Huang-Huai-hai plain. Crop Prot. 2017, 99, 76–84. [Google Scholar] [CrossRef]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.-F.; Ferrer, A.; Peigné, J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhou, Q.; Gan, S.; Wang, L. Factors affecting farmers’ willingness to pay for adopting vegetable residue compost in north china. Acta Ecol. Sin. 2018, 38, 401–411. [Google Scholar] [CrossRef]
- D’Souza, A.; Mishra, A.K. Adoption and abandonment of partial conservation technologies in developing economies: The case of South Asia. Land Use Policy 2018, 70, 212–223. [Google Scholar] [CrossRef]
- Rogers, E.M. A prospective and retrospective look at the diffusion model. J. Health Commun. 2004, 9, 13–19. [Google Scholar] [CrossRef]
- Tey, Y.S.; Li, E.; Bruwer, J.; Abdullah, A.M.; Brindal, M.; Radam, A.; Ismail, M.M.; Darham, S. The relative importance of factors influencing the adoption of sustainable agricultural practices: A factor approach for Malaysian vegetable farmers. Sustain. Sci. 2014, 9, 17–29. [Google Scholar] [CrossRef]
- Adnan, N.; Nordin, S.M.; Abu Bakar, Z.B. Understanding and facilitating sustainable agricultural practice: A comprehensive analysis of adoption behaviour among Malaysian paddy farmers. Land Use Policy 2017, 68, 372–382. [Google Scholar] [CrossRef]
- Borges, J.A.R.; Tauer, L.W.; Lansink, A.G.J.M.O. Using the theory of planned behaviour to identify key beliefs underlying Brazilian cattle farmers’ intention to use improved natural grassland: A mimic modelling approach. Land Use Policy 2016, 55, 193–203. [Google Scholar] [CrossRef]
- Wautersa, E.; Bielders, C.; Poesen, J.; Govers, G.; Mathijs, E. Adoption of soil conservation practices in Belgium: An examination of the theory of planned behaviour in the agri-environmental domain. Land Use Policy 2010, 27, 86–94. [Google Scholar] [CrossRef]
- Agarwal, R.; Prasad, J. A conceptual and operational definition of personal innovativeness in the domain of information technology. Inf. Syst. Res. 1998, 9, 204–215. [Google Scholar] [CrossRef]
- Slade, E.L.; Dwivedi, Y.K.; Piercy, N.C.; Williams, M.D. Modelling consumers’ adoption intentions of remote mobile payments in the United Kingdom: Extending UTAUT with innovativeness, risk, and trust. Psychol. Mark. 2015, 32, 860–873. [Google Scholar] [CrossRef]
- Small, B.; Brown, P.; Munguia, O.M.D. Values, trust, and management in New Zealand agriculture. Int. J. Agric. Sustain. 2016, 14, 282–306. [Google Scholar] [CrossRef]
- Turyahikayo, W.; Kamagara, E. Trust, perception and effectiveness of extension services in Uganda: A case of National Agricultural Advisory Services (NAADS). J. Agric. Ext. Rural Dev. 2016, 8, 224–231. [Google Scholar]
- Dimitriadis, S.; Kyrezis, N. Linking trust to use intention for technology-enabled bank channels: The role of trusting intentions. Psychol. Mark. 2010, 27, 799–820. [Google Scholar] [CrossRef]
- Lapple, D. Comparing attitudes and characteristics of organic, former organic and conventional farmers: Evidence from Ireland. Renew. Agric. Food Syst. 2013, 28, 329–337. [Google Scholar] [CrossRef] [Green Version]
- Tosakana, N.S.P.; Van Tassell, L.W.; Wulfhorst, J.D.; Boll, J.; Mahler, R.; Brooks, E.S.; Kane, S. Determinants of the adoption of conservation practices by farmers in the northwest wheat and range region. J. Soil Water Conserv. 2010, 65, 404–412. [Google Scholar] [CrossRef] [Green Version]
- Walisinghe, B.R.; Ratnasiri, S.; Rohde, N.; Guest, R. Does agricultural extension promote technology adoption in Sri Lanka. Int. J. Soc. Econ. 2017, 44, 2173–2186. [Google Scholar] [CrossRef]
- Maichum, K.; Parichatnon, S.; Peng, K. Application of the extended theory of planned behavior model to investigate purchase intention of green products among Thai consumers. Sustainability 2016, 8, 1077–1092. [Google Scholar] [CrossRef] [Green Version]
- Trivedi, R.H.; Patel, J.D.; Acharya, N. Causality analysis of media influence on environmental attitude, intention and behaviours leading to green purchasing. J. Clean. Prod. 2018, 196, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, X.; Yu, J.; Yao, X. Toward cleaner production: What drives farmers to adopt eco-friendly agricultural production? J. Clean. Prod. 2018, 184, 550–558. [Google Scholar] [CrossRef]
- Winsen, F.; Van de Mey, Y.; Lauwers, L.; Van Passel, S.; Vancauteren, M.; Wauters, E. Determinants of risk behaviour: Effects of perceived risks and risk attitude on farmer’s adoption of risk management strategies. J. Risk Res. 2016, 19, 56–78. [Google Scholar] [CrossRef]
- Brick, K.; Visser, M. Risk preferences, technology adoption and insurance uptake: A framed experiment. J. Econ. Behav. Organ. 2015, 118, 383–396. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.; Rana, N.; Dwivedi, Y.K. The unified theory of acceptance and use of technology (UTAUT): A literature review. J. Enterp. Inf. Manag. 2015, 28, 443–488. [Google Scholar] [CrossRef] [Green Version]
- Mannan, S.; Nordin, S.M.; Rafik-Galea, S.; Rizal, A.R.A. The ironies of new innovation and the sunset industry: Diffusion and adoption. J. Rural Stud. 2017, 55, 316–322. [Google Scholar] [CrossRef]
- Moore, G.C.; Benbasat, I. Development of an instrument to measure the perceptions of adopting an information technology innovation. Inf. Syst. Res. 1991, 2, 192–222. [Google Scholar] [CrossRef]
- Ajzen. The theory of planned behaviour. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Yina, L. Environmental innovation practices and performance: Moderating effect of resource commitment. J. Clean. Prod. 2014, 66, 450–458. [Google Scholar]
- Pino, G.; Toma, P.; Rizzo, C.; Miglietta, P.P.; Peluso, A.M.; Guido, G. Determinants of farmers’ intention to adopt water-saving measures: Evidence from Italy. Sustainability 2017, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- Wossen, T.; Berger, T.; Mequaninte, T.; Alamirew, B. Social network effects on the adoption of sustainable natural resource management practices in Ethiopia. Int. J. Sustain. Dev. World Ecol. 2013, 20, 477–483. [Google Scholar] [CrossRef]
- Mariano, M.J.; Villano, R.; Fleming, E. Factors influencing farmers’ adoption of modern rice technologies and good management practices in the Philippines. Agric. Syst. 2012, 110, 41–53. [Google Scholar] [CrossRef]
- Lalani, B.; Dorward, P.; Holloway, G.; Wauters, E. Smallholder farmers’ motivations for using conservation agriculture and the roles of yield, labour and soil fertility in decision making. Agric. Syst. 2016, 146, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, S.E.; Bijani, M.; Sadighi, H. Adoption behaviour towards the use of nuclear technology in agriculture: A causal analysis. Technol. Soc. 2018. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*power 3: A flexible statistical power analysis program for the social, behavioural, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Chin, W.W. How to write up and report PLS analyses. In Handbook of Partial Least Squares; Vinzi, V.E., Chin, W.W., Henseler, J., Wang, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Liebana-Cabanillas, F.; Marinkovic, V.; de Luna, I.R.; Kalinic, Z. Predicting the determinants of mobile payment acceptance: A hybrid SEM-neural network approach. Technol. Forecast. Soc. Chang. 2018, 129, 117–130. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioural research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Harman, H.H. Modern Factor Analysis; University of Chicago Press: Chicago, IL, USA, 1976. [Google Scholar]
- Peng, D.X.; Lai, F. Using partial least squares in operations management research: A practical guideline and summary of past research. J. Oper. Manag. 2012, 30, 467–480. [Google Scholar] [CrossRef]
- Cain, M.K.; Zhang, Z.; Yuan, K.-H. Univariate and multivariate skewness and kurtosis for measuring non-normality: Prevalence, influence, and estimation. Behav. Res. Methods 2017, 49, 1716–1735. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Earlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling; Sage: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Shmueli, G.; Ray, S.; Velasquez Estrada, J.M.; Shatla, S.B. The elephant in the room: Evaluating the predictive performance of PLS models. J. Bus. Res. 2016, 69, 4552–4564. [Google Scholar] [CrossRef]
- Ringle, C.M.; Sarstedt, M. Gain more insight from your PLS-SEM results. The importance-performance map analysis. Ind. Manag. Data Syst. 2016, 116, 165–1886. [Google Scholar] [CrossRef]
- Samarasinghe, S. Neural Network for Applied sciences and Engineering: From Fundamentals to Complex Pattern Recognition; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Leong, L.Y.; Hew, T.S.; Ooi, K.B.; Chong, A.Y.-L. Predicting the antecedents of thrust in social commerce-A hybrid structural equation modeling with neural network approach. J. Bus. Res. 2020, 110, 24–40. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modelling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Leong, L.Y.; Hew, T.S.; Ooi, K.B.; Lee, V.H.; Hew, J.J. A hybrid SEM-neural network analysis of social media addiction. Expert Syst. Appl. 2019, 133, 296–316. [Google Scholar] [CrossRef]
- Werner, M.; Wauters, E.; Bijttebier, J.; Steinmann, H.-H.; Ruysschaert, G.; Knierim, A. Farm-level implementation of soil conservation measures: Farmers’ beliefs and intentions. Renew. Agric. Food Syst. 2017, 32, 524–537. [Google Scholar] [CrossRef]
- Wamsler, C.; Brink, E. Mindsets for sustainability: Exploring the link between mindfulness and sustainable climate adaptation. Ecol. Econ. 2018, 151, 55–61. [Google Scholar] [CrossRef]
- Smith, L.E.D.; Siciliano, G. A comprehensive review of constraints to improved management of fertilisers in china and the mitigation of diffuse water pollution from agriculture. Agric. Ecosyst. Environ. 2015, 209, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Ibrahum, A.M.; Hassan, M.S.; Gusau, A.L. Factors influencing acceptance and use of ICT innovations by agribusinesses. J. Glob. Inf. Manag. 2018, 28, 113–134. [Google Scholar] [CrossRef] [Green Version]
n | % | n | % | ||
---|---|---|---|---|---|
Gender | Age | ||||
Male | 304 | 90.5 | 21–29 years of age | 59 | 17.5 |
Female | 32 | 9.5 | 30–39 years of age | 100 | 29.7 |
Total | 336 | 100 | 40–49 years of age | 107 | 31.8 |
50–59 years of age | 55 | 16.6 | |||
Education | 60 and Above | 15 | 4.4 | ||
Primary | 33 | 9.8 | Total | 336 | 100 |
High School | 92 | 27.5 | |||
College Degree | 134 | 39.8 | Marital Status | ||
University Degree | 77 | 22.9 | Single | 91 | 27.0 |
Total | 336 | 100 | Married | 191 | 56.8 |
Widow | 43 | 12.7 | |||
Farming Experience | Divorcee | 11 | 3.5 | ||
1–4 Years | 16 | 4.7 | Total | 336 | 100 |
5–10 Years | 76 | 22.8 | |||
11–15 Years | 150 | 44.6 | Location | ||
16–20 Years | 94 | 27.9 | Gujranwala | 75 | 22.3 |
Total | 336 | 100 | Gujrat | 86 | 25.6 |
Sialkot | 98 | 29.2 | |||
NGO Members | MB Din | 77 | 22.9 | ||
Yes | 187 | 55.6 | Total | 336 | 100 |
No | 149 | 44.4 | |||
Total | 336 | 100 |
Variables | No. of Items | Cronbach’s Alpha | DG Rho | Composite Reliability | Average Variance Extracted | Variance Inflation Factor |
---|---|---|---|---|---|---|
Farmer innovativeness | 5 | 0.863 | 0.879 | 0.899 | 0.641 | 1.805 |
Trust on Extension | 5 | 0.785 | 0.804 | 0.850 | 0.532 | 1.772 |
Profit Orientation | 4 | 0.738 | 0.743 | 0.837 | 0.564 | 1.567 |
Environmental Attitude | 5 | 0.755 | 0.776 | 0.834 | 0.503 | 2.353 |
Risk-taking Attitude | 4 | 0.696 | 0.705 | 0.812 | 0.520 | 2.217 |
Performance Expectancy | 4 | 0.730 | 0.731 | 0.830 | 0.564 | 2.381 |
Effort Expectancy | 4 | 0.713 | 0.732 | 0.819 | 0.533 | 1.878 |
Social Influence | 4 | 0.825 | 0.845 | 0.882 | 0.651 | 1.441 |
Facilitating Conditions | 5 | 0.767 | 0.774 | 0.967 | 0.856 | 1.383 |
Voluntariness of Use | 3 | 0.715 | 0.720 | 0.840 | 0.636 | 1.251 |
Intention to Adopt CAPs | 4 | 0.855 | 0.857 | 0.902 | 0.698 | 1.350 |
Sustainable Farm performance | 18 | 0.994 | 0.944 | 0.994 | 0.907 | - |
Coefficient | t-Values | Sig. | Decision | |
---|---|---|---|---|
Sub-Dimensions of Sustainable farm performance | ||||
ENP → SFP | 0.333 | 296.43 | 0.000 | Supported |
YDP → SFP | 0.341 | 251.89 | 0.000 | Supported |
FIP → SFP | 0.340 | 259.42 | 0.000 | Supported |
Hypothesis | Coefficient | t-Values | Sig. | r2 | f2 | Q2 | Decision | |
---|---|---|---|---|---|---|---|---|
H1 | FIN → ITA | −0.030 | 0.522 | 0.301 | 0.001 | Not Supported | ||
H2 | TOE → ITA | 0.107 | 1.267 | 0.103 | 0.010 | Not Supported | ||
H3 | POT → ITA | 0.131 | 2.024 | 0.022 | 0.017 | Supported | ||
H4 | ENA → ITA | 0.172 | 2.223 | 0.013 | 0.019 | Supported | ||
H5 | RTA → ITA | 0.005 | 0.059 | 0.476 | 0.000 | Not Supported | ||
H6 | PEX → ITA | 0.020 | 2.520 | 0.387 | 0.000 | Not Supported | ||
H7 | EEX → ITA | 0.233 | 4.942 | 0.000 | 0.045 | Supported | ||
H8 | SIN → ITA | 0.084 | 1.567 | 0.059 | 0.350 | 0.008 | 0.205 | Not Supported |
H9 | FCN → UOC | 0.131 | 4.942 | 0.000 | 0.016 | Supported | ||
H10 | VOU → UOC | 0.094 | 1.852 | 0.032 | 0.009 | Supported | ||
H11 | ITA → UOC | 0.267 | 4.835 | 0.000 | 0.217 | 0.067 | 0.183 | Supported |
H12 | UOC → SFP | 0.789 | 28.818 | 0.000 | 0.623 | 1.651 | 0.488 | Supported |
β | CI-min | CI-max | t-Value | Sig. | Decision | |
---|---|---|---|---|---|---|
HM1: PEXxAGE → ITA | 0.054 | −0.057 | 0.156 | 0.838 | 0.201 | No Moderation |
HM2: EEXxAGE → ITA | −0.020 | −0.139 | 0.081 | 0.296 | 0.384 | No Moderation |
HM3: SINxAGE → ITA | −0.039 | −0.123 | 0.075 | 0.638 | 0.262 | No Moderation |
HM4: PEXxEDU → ITA | 0.058 | −0.037 | 0.167 | 0.946 | 0.172 | No Moderation |
HM5: EEXxEDU → ITA | −0.044 | −0.154 | 0.071 | 0.649 | 0.258 | No Moderation |
HM6: SINxEDU → ITA | −0.038 | −0.141 | 0.051 | 0.664 | 0.254 | No Moderation |
HM7: PEXxEXP → ITA | −0.232 | −0.352 | −0.117 | 3.358 | 0.000 | Moderation |
HM8: EEXxEXP → ITA | 0.191 | 0.084 | 0.305 | 2.954 | 0.002 | Moderation |
HM9: SINxEXP → ITA | 0.060 | −0.052 | 0.142 | 0.999 | 0.159 | No Moderation |
HM10: FCVxVOU → UOC | −0.164 | −0.257 | −0.082 | 3.185 | 0.001 | Moderation |
Target Construct | SFP | ||||
---|---|---|---|---|---|
Variables | Total Effect | Performance | Variables | Total Effect | Performance |
FIN | −0.007 | 67.218 | EEX | 0.061 | 66.647 |
TOE | 0.028 | 68.250 | SIN | 0.021 | 71.057 |
POT | 0.036 | 70.231 | FCN | 0.137 | 69.224 |
ENA | 0.046 | 68.657 | VOU | 0.088 | 67.329 |
RTA | 0.001 | 67.828 | ITA | 0.209 | 61.895 |
PEX | 0.005 | 65.025 | UOC | 0.871 | 60.863 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayat, N.; Al Mamun, A.; Nasir, N.A.M.; Selvachandran, G.; Nawi, N.B.C.; Gai, Q.S. Predicting Sustainable Farm Performance—Using Hybrid Structural Equation Modelling with an Artificial Neural Network Approach. Land 2020, 9, 289. https://doi.org/10.3390/land9090289
Hayat N, Al Mamun A, Nasir NAM, Selvachandran G, Nawi NBC, Gai QS. Predicting Sustainable Farm Performance—Using Hybrid Structural Equation Modelling with an Artificial Neural Network Approach. Land. 2020; 9(9):289. https://doi.org/10.3390/land9090289
Chicago/Turabian StyleHayat, Naeem, Abdullah Al Mamun, Noorul Azwin Md Nasir, Ganeshsree Selvachandran, Noorshella Binti Che Nawi, and Quek Shio Gai. 2020. "Predicting Sustainable Farm Performance—Using Hybrid Structural Equation Modelling with an Artificial Neural Network Approach" Land 9, no. 9: 289. https://doi.org/10.3390/land9090289
APA StyleHayat, N., Al Mamun, A., Nasir, N. A. M., Selvachandran, G., Nawi, N. B. C., & Gai, Q. S. (2020). Predicting Sustainable Farm Performance—Using Hybrid Structural Equation Modelling with an Artificial Neural Network Approach. Land, 9(9), 289. https://doi.org/10.3390/land9090289