Forest Disturbance Types and Current Analogs for Historical Disturbance-Independent Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Transition to No-Analog Communities in the Northern Lower Peninsula
2.2. Current Analogs for Beech–Hemlock Forests in the Eastern United States
3. Results
3.1. Transition to No-Analog Communities in the Northern Lower Peninsula
3.2. Current Analogs for Beech–Hemlock Forests in the Eastern United States
4. Discussion
4.1. Key Findings
4.2. Disturbance Change, Climate Change, and Novel Forests
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woods, K.D. Long-term change and spatial pattern in a late-successional hardwood. J. Ecol. 2000, 88, 267–282. [Google Scholar] [CrossRef] [Green Version]
- Whitney, G.G. An ecological history of the Great Lakes forest of Michigan. J. Ecol. 1987, 1, 667–684. [Google Scholar] [CrossRef]
- Lorimer, C.G.; White, A.S. Scale and frequency of natural disturbances in the northeastern, U.S.: Implications for early successional forest habitats and regional age distributions. For. Ecol. Manag. 2003, 185, 41–64. [Google Scholar] [CrossRef]
- Cleland, D.T.; Crow, T.R.; Saunders, S.C.; Dickmann, D.I.; Maclean, A.L.; Jordan, J.K.; Watson, R.L.; Sloan, A.M.; Brosofske, K.D. Characterizing historical and modern fire regimes in Michigan (USA): A landscape ecosystem approach. Landsc. Ecol. 2004, 19, 311–325. [Google Scholar] [CrossRef]
- Tyrrell, L.E.; Crow, T.R. Structural characteristics of old-growth hemlock-hardwood forests in relation to age. Ecology 1994, 75, 370–386. [Google Scholar] [CrossRef]
- Whitney, G.G. From Coastal Wilderness to Fruited Plain; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Burns, R.M.; Honkala, B.H. Silvics of North America: 1. Conifers; 2. Broadleafs. Agriculture Handbook 654; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1990.
- Schafale, M.P.; Harcombe, P.A. Presettlement vegetation of Hardin County, Texas. Am. Midl. Nat. 1983, 109, 355–366. [Google Scholar] [CrossRef]
- Stephanson, C.; Coe, N. Impacts of beech bark disease and climate change on American beech. Forests 1998, 8, 155. [Google Scholar] [CrossRef] [Green Version]
- Hanberry, B.B.; Bragg, D.C.; Alexander, H.D. Open forest ecosystems: An excluded state. For. Ecol. Manag. 2020, 472, 118256. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Chapin, F.S. Fire interval effects on successional trajectory in boreal forests of northwest Canada. Ecosystems 2020, 9, 268–277. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Hollingsworth, T.N.; Chapin, F.S., III; Mack, M.C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Chang. Biol. 2010, 16, 1281–1295. [Google Scholar] [CrossRef]
- Johnson, W.C. Woodland 2006, expansions in the Platte River, Nebraska: Patterns and causes. Ecol. Monogr. 1994, 64, 45–84. [Google Scholar] [CrossRef]
- Jackson, M.T. Forest communities and tree species of the Lower Wabash River Basin. Proc. Indiana Acad. Sci. 2006, 115, 94–102. [Google Scholar]
- Hanberry, B.B.; Abrams, M.D.; Arthur, M.A.; Varner, J.M. Reviewing fire, climate, deer, and foundation species as drivers of historically open oak and pine forests and transition to closed forests. Front. For. Glob. Chang. 2020, 3, 56. [Google Scholar] [CrossRef]
- O’Brien, J.J.; Hiers, J.K.; Callaham, M.A., Jr.; Mitchell, R.J.; Jack, S.B. Interactions among overstory structure, seedling life-history traits, and fire in frequently burned neotropical pine forests. AMBIO 2008, 37, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Chen, J.M.; Birdsey, R.; McCullough, K.; He, L.; Deng, F. Age structure and disturbance legacy of North American forests. Biogeosciences 2011, 8, 715–732. [Google Scholar] [CrossRef] [Green Version]
- Hanberry, B.B.; Dey, D.C. Historical range of variability for restoration and management in Wisconsin. Biodivers. Conserv. 2019, 28, 2931–2950. [Google Scholar] [CrossRef]
- Abrams, M.D. The red maple paradox. BioScience 1998, 48, 355–364. [Google Scholar] [CrossRef]
- Hanberry, B.B.; Kabrick, J.M.; He, H.S. Changing tree composition by life history strategy in a grassland-forest landscape. Ecosphere 2014, 6, 277. [Google Scholar] [CrossRef] [Green Version]
- Hanberry, B.B. Trajectory from beech and oak forests to eastern broadleaf forests in Indiana, USA. Ecol. Process. 2019, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Whitney, G.G. The history and status of the hemlock-hardwood forests of the Allegheny Plateau. J. Ecol. 1990, 78, 443–458. [Google Scholar] [CrossRef]
- Maizel, M.; White, R.D.; Root, R.; Gage, S.; Stitt, S.; Osborne, L.; Muehlbach, G. Historical Interrelationships between Population Settlement and Farmland in the Conterminous United States. 1790. Available online: https://archive.usgs.gov/archive/sites/landcover.usgs.gov/luhna/chap2.html (accessed on 21 May 2020).
- Homer, C.; Dewitz, J.; Jin, S.; Xian, G.; Costello, C.; Danielson, P.; Gass, L.; Funk, M.; Wickham, J.; Stehman, S.; et al. Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database. ISPRS J. Photogramm. Remote Sens. 2020, 162, 184–199. [Google Scholar] [CrossRef]
- Cleland, D.T.; Avers, P.E.; McNab, W.H.; Jensen, M.E.; Bailey, R.G.; King, T.; Russell, W.E. National hierarchical framework of ecological units. In Ecosystem Management Applications for Sustainable Forest and Wildlife Resources; Boyce, M.S., Haney, A., Eds.; Yale University Press: London, UK, 1997; pp. 18–200. [Google Scholar]
- Forest Inventory and Analysis [FIA]. FIA DataMart. Available online: https://apps.fs.usda.gov/fia/datamart/datamart.html (accessed on 30 January 2021).
- Landfire. Biophysical Settings Description and Quantitative Models. Available online: https://www.landfire.gov/bps.php (accessed on 19 January 2021).
- Landfire. Data Products Distribution Table. Available online: https://www.landfire.gov/version_comparison.php (accessed on 17 January 2021).
- White, C.A. A History of the Rectangular Survey System; Bureau of Land Management, Government Printing Office: Washington, DC, USA, 1986. Available online: https://www.blm.gov/sites/blm.gov/files/histrect.pdf (accessed on 18 January 2021).
- Bechtold, W.A.; Patterson, P.L. The Enhanced Forest Inventory and Analysis Program-National Sampling Design and Estimation Procedures; U.S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2005.
- Overpeck, J.T.; Webb, T.I.; Prentice, I.C. Quantitative interpretation of fossil pollen spectra: Dissimilarity coefficients and the method of modern analogs. Quat. Res. 1985, 23, 87–108. [Google Scholar] [CrossRef]
- Simpson, G.L.; Oksanen, J. 2020 Analogue: Analogue and Weighted Averaging Methods for Palaeoecology. R Package Version 0.17-5. Available online: https://cran.r-project.org/package=analogue (accessed on 18 January 2021).
- Hanberry, B.B.; Nowacki, G.J. Oaks were the foundation genus of the east-central United States. Quat. Sci. Rev. 2016, 145, 94–103. [Google Scholar] [CrossRef]
- Paciorek, C.; Goring, S.; Thurman, A.; Cogbill, C.; Williams, J.; Mladenoff, D.; Peters, J.; Zhu, J.; McLachlan, J. Settlement-era Gridded Tree Composition, Northeastern, U.S.: Level 2 ver 0. Environmental Data Initiative. Available online: https://doi.org/10.6073/pasta/8544e091b64db26fdbbbafd0699fa4f9 (accessed on 30 October 2020).
- Hanberry, B. Revisiting historical beech and oak forests in Indiana using a GIS method to recover information from bar charts. PeerJ 2018, 6, e5158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLachlan, J.; Williams, J. Settlement Trees, Southern Michigan Level 0 ver 0. Environmental Data Initiative. Available online: https://doi.org/10.6073/pasta/8d033c1cfadca42bf060f9f38940c81e (accessed on 23 October 2020).
- Forrester, J.A.; Mcgee, G.G.; Mitchell, M.J. Effects of beech bark disease on aboveground biomass and species composition in a mature northern hardwood forest, 1985. J. Torrey Bot. Soc. 2003, 130, 70–78. [Google Scholar] [CrossRef]
- Woods, K.D. Dynamics in late-successional hemlock–hardwood forests over three decades. Ecology 2000, 81, 110–126. [Google Scholar]
- Hane, E.N. Indirect effects of beech bark disease on sugar maple seedling survival. Can. J. For. Res. 2003, 33, 807–813. [Google Scholar] [CrossRef]
- Duchesne, L.; Ouimet, R.; Moore, J.-D.; Paquin, R. Changes in structure and composition of maple–beech stands following sugar maple decline in Québec, Canada. For. Ecol. Manag. 2005, 208, 223–236. [Google Scholar] [CrossRef]
- Runkle, J.R. Impacts of beech bark disease and deer browsing on the old-growth forest. Am. Midl. Nat. 2007, 157, 241–249. [Google Scholar] [CrossRef]
- Collin, A.; Messier, C.; Kembel, S.; Bélanger, N. Low light availability associated with American beech is the main factor for reduced sugar maple seedling survival and growth rates in a hardwood forest of Southern Quebec. Forests 2007, 8, 413. [Google Scholar] [CrossRef] [Green Version]
- Keeton, W.S.; Kraft, C.E.; Warren, D.R. Mature and old-growth riparian forests: Structure, dynamics, and effects on Adirondack stream habitats. Ecol. Appl. 2007, 17, 852–868. [Google Scholar] [CrossRef] [PubMed]
- Kenoyer, L.A. Ecological notes on Kalamazoo County, Michigan, based on the original land survey. Mich. Acad. Sci. Arts Lett. 1930, 11, 211–217. [Google Scholar]
- Mokany, K.; Ash, J.; Roxburgh, S. Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J. Ecol. 2008, 96, 884–893. [Google Scholar] [CrossRef]
- Hanberry, B.; Hanberry, P.; Demarais, S.; Jones, J. Importance of residual trees to birds in regenerating pine plantations. iForest 2012, 5, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Hanberry, B.B.; He, H.S. Effects of historical and current disturbance on forest biomass in Minnesota. Landsc. Ecol. 2015, 30, 1473–1482. [Google Scholar] [CrossRef]
- Eschtruth, A.K.; Cleavitt, N.L.; Battles, J.J.; Evans, R.A.; Fahey, T.J. Vegetation dynamics in declining eastern hemlock stands: 9 years of forest response to hemlock woolly adelgid infestation. Can. J. For. Res. 2006, 36, 1435. [Google Scholar] [CrossRef]
- McShea, W.J.; Healy, W.M.; Devers, P.; Fearer, T.; Koch, F.H.; Stauffer, D.; Waldon, J. Forestry matters: Decline of oaks will impact wildlife in hardwood forests. J. Wildl. Manag. 2007, 71, 1717–1728. [Google Scholar] [CrossRef]
- Rooney, T.P.; Wiegmann, S.M.; Rogers, D.A.; Waller, D.M. Biotic impoverishment and homogenization in unfragmented forest understory communities. Conserv. Biol. 2004, 18, 787–798. [Google Scholar] [CrossRef]
- Lovett, G.M.; Canham, C.D.; Arthur, M.A.; Weathers, K.C.; Fitzhugh, R.D. Forest ecosystem responses to exotic pests and pathogens in eastern North America. BioScience 2006, 56, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Ellison, A.M.; Bank, M.S.; Clinton, B.D.; Colburn, E.A.; Elliott, K.; Ford, C.R.; Foster, D.R.; Kloeppel, B.D.; Knoepp, J.D.; Lovett, G.M.; et al. Loss of foundation species: Consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 2005, 3, 479–486. [Google Scholar] [CrossRef]
- McCullough, D.G. Munching, 1992, Crunching & Sucking: Invasive Forest Insect Pests in the U.S. & Michigan. Available online: https://forestadaptation.org/sites/default/files/McCullough_HOL_ITCM_Day1_handouts.pdf (accessed on 28 October 2020).
- Farrar, A.; Ostrofsky, W.D. Dynamics of American beech regeneration 10 years following harvesting in a beech bark disease-affected stand in Maine. North. J. Appl. For. 2006, 23, 192–196. [Google Scholar] [CrossRef] [Green Version]
- Royo, A.A.; Carson, W.P. On the formation of dense understorey layers in forests worldwide: Consequences and implications for forest dynamics, biodiversity, and succession. Can. J. For. Res. 2006, 36, 1345–1362. [Google Scholar] [CrossRef]
- Calcote, R. Mid-Holocene climate and the hemlock decline: The range limit of Tsuga canadensis in the western Great Lakes region, USA. Holocene 2003, 13, 215–224. [Google Scholar] [CrossRef]
- Williams, J.W.; Jackson, S.T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 2007, 5, 475–482. [Google Scholar] [CrossRef]
- Hanberry, B.B.; Brzuszek, R.F.; Foster, H.T., II; Schauwecker, T.J. Recalling open old growth forests in the Southeastern Mixed Forest province of the United States. Écoscience 2019, 26, 11–22. [Google Scholar] [CrossRef]
- Frost, C.C. Four centuries of changing landscape patterns in the longleaf pine ecosystem. In Proceedings of the Tall Timbers Fire Ecology Conference, Tallahassee, FL, USA, 30 May–2 June 1991; Hermann, S.M., Ed.; Tall Timbers Research Station: Tallahassee, FL, USA, 1993; Volume 18, pp. 17–43. [Google Scholar]
- Hanberry, B.B.; Coursey, K.; Kush, J.S. Structure and composition of historical longleaf pine ecosystems in Mississippi, USA. Hum. Ecol. 2018, 46, 241–248. [Google Scholar] [CrossRef]
- Crow, T.R. Reproductive mode and mechanisms for self-replacement of northern red oak (Quercus rubra)—A review. For. Sci. 1988, 34, 19–40. [Google Scholar]
- Hanberry, B.B.; Hansen, M.H. Latitudinal range shifts of tree species in the United States. Basic Appl. Ecol. 2015, 16, 231–238. [Google Scholar] [CrossRef]
- Woodall, C.W.; Westfall, J.A.; D’Amato, A.W.; Foster, J.R.; Walters, B.F. Decadal changes in tree range stability across forests of the eastern, U.S. For. Ecol. Manag. 2018, 429, 503–510. [Google Scholar] [CrossRef]
- Goring, S.J.; Williams, J.W. Effect of historical land-use and climate change on tree-climate relationships in the upper Midwestern United States. Ecol. Lett. 2007, 20, 461–470. [Google Scholar] [CrossRef]
- Webb, T. Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Vegetatio 1986, 67, 75–91. [Google Scholar] [CrossRef]
- Davis, M.B.; Shaw, R.G. Range shifts and adaptive responses to Quaternary climate change. Science 2001, 292, 673–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Bergeron, Y.; Zhao, X.H.; Drobyshev, I. Stand history is more important than climate in controlling red maple (Acer rubrum L.) growth at its northern distribution limit in western Quebec. Can. J. Plant Ecol. 2014, 8, 368–379. [Google Scholar] [CrossRef] [Green Version]
Species | Scientific Name | Historical Line | Historical Point | Ratio | ||
---|---|---|---|---|---|---|
Count | % | Count | % | |||
eastern hemlock | Tsuga canadensis | 14,481 | 16.06 | 12,029 | 12.35 | 1.30 |
sugar maple | Acer saccharum | 12,467 | 13.83 | 9587 | 9.84 | 1.40 |
American beech | Fagus grandifolia | 12,408 | 13.76 | 22,698 | 23.30 | 0.59 |
pine | 26,950 | 29.89 | 24,090 | 24.73 | 1.21 | |
pine—unidentified | 7741 | 8.58 | 4784 | 4.91 | N/A | |
eastern white pine | Pinus strobus | 7105 | 7.88 | 5978 | 6.14 | 1.28 |
red pine | Pinus resinosa | 6301 | 6.99 | 6752 | 6.93 | 1.01 |
jack pine | Pinus banksiana | 5803 | 6.44 | 6576 | 6.75 | 0.95 |
northern white-cedar | Thuja occidentalis | 6349 | 7.04 | 7595 | 7.80 | 0.90 |
Species | Scientific Name | Historical % | Current % | Ratio |
---|---|---|---|---|
red pine | Pinus resinosa | 9.85 | 16.90 | 1.72 |
red maple | Acer rubrum | 0.85 | 11.24 | 13.22 |
northern white-cedar | Thuja occidentalis | 7.04 | 9.80 | 1.39 |
bigtooth aspen | Populus grandidentata | 1.04 | 7.24 | 6.96 |
sugar maple | Acer saccharum | 14.66 | 7.13 | 0.49 |
quaking aspen | Populus tremuloides | 1.04 | 6.07 | 5.83 |
jack pine | Pinus banksiana | 9.30 | 5.61 | 0.60 |
eastern white pine | Pinus strobus | 10.74 | 4.84 | 0.45 |
northern red oak | Quercus rubra | 0.36 | 4.22 | 11.72 |
white oak | Quercus alba | 1.39 | 3.92 | 2.82 |
balsam fir | Abies balsamea | 0.93 | 2.41 | 2.59 |
black oak | Quercus velutina | 0.36 | 2.25 | 6.24 |
northern pin oak | Quercus ellipsoidalis | 0.36 | 2.15 | 5.96 |
black cherry | Prunus serotina | 0.09 | 1.54 | 17.56 |
American basswood | Tilia americana | 1.21 | 1.46 | 1.20 |
green ash | Fraxinus pennsylvanica | 0.12 | 1.35 | 10.88 |
American beech | Fagus grandifolia | 13.76 | 1.20 | 0.09 |
paper birch | Betula papyrifera | 1.99 | 1.17 | 0.59 |
black ash | Fraxinus nigra | 1.44 | 1.12 | 0.78 |
white ash | Fraxinus americana | 0.12 | 0.92 | 7.42 |
white spruce | Picea glauca | 0.57 | 0.88 | 1.55 |
silver maple | Acer saccharinum | 0.85 | 0.83 | 0.98 |
eastern hemlock | Tsuga canadensis | 16.06 | 0.79 | 0.05 |
black spruce | Picea mariana | 0.57 | 0.79 | 1.38 |
tamarack | Larix laricina | 3.36 | 0.64 | 0.19 |
American elm | Ulmus americana | 1.88 | 0.38 | 0.20 |
Historical Line Surveys | Current FIA Surveys | Current Analogs from FIA Surveys in the Eastern US | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sub | % Beech | % Hemlock | % s. Maple | % Beech | % Hemlock | % s. Maple | Province | Sub | % Beech | % Hemlock | % s. Maple |
a | 22.8 | 20.6 | 14.5 | 2.5 | 2.0 | 7.5 | Northeastern Mixed Forest | 211Db | 1.5 | 15.6 | 0.7 |
b | 7.7 | 11.7 | 4.3 | 0.2 | 1.0 | 1.3 | Northeastern Mixed Forest | 211Ed | 1.1 | 17.4 | 13.0 |
c | 20.0 | 22.7 | 14.4 | 3.3 | 1.6 | 12.8 | Northeastern Mixed Forest | 211Ff | 11.8 | 8.0 | 10.1 |
d | 21.8 | 20.1 | 30.8 | 0.5 | 0.1 | 18.6 | Northeastern Mixed Forest | 211Ia | 11.6 | 10.3 | 16.7 |
e | 19.0 | 19.6 | 28.1 | 1.2 | 0.9 | 16.0 | Northeastern Mixed Forest | 211Ib | 10.2 | 10.3 | 17.6 |
f | 25.7 | 19.6 | 33.3 | 3.0 | 1.8 | 32.6 | Northeastern Mixed Forest | 211Jd | 4.7 | 14.6 | 13.1 |
g | 3.1 | 7.3 | 1.3 | 0.4 | 0.1 | 0.6 | Eastern Broadleaf Forest | 221Aa | 6.9 | 17.2 | 0.0 |
h | 5.5 | 21.2 | 2.5 | 0.0 | 0.0 | 0.2 | Eastern Broadleaf Forest | 221Al | 8.8 | 19.2 | 3.0 |
i | 18.8 | 19.5 | 34.5 | 2.6 | 1.2 | 31.9 | Adirondack-New England Mixed Forest | M211Bb | 7.7 | 22.6 | 10.0 |
j | 10.1 | 14.9 | 9.1 | 1.5 | 0.7 | 3.7 | Adirondack-New England Mixed Forest | M211Bd | 4.7 | 18.8 | 2.8 |
k | 8.0 | 10.6 | 4.5 | 0.2 | 0.0 | 1.2 | Adirondack-New England Mixed Forest | M211Cc | 8.7 | 18.8 | 15.0 |
l | 6.4 | 11.3 | 5.7 | 0.3 | 0.7 | 1.1 | Adirondack-New England Mixed Forest | M211Cd | 17.8 | 3.4 | 21.0 |
m | 13.2 | 32.0 | 9.7 | 2.6 | 0.2 | 4.9 | Adirondack-New England Mixed Forest | M211Db | 19.8 | 8.0 | 15.5 |
mean | 14.0 | 17.8 | 14.8 | 1.4 | 0.8 | 10.2 | Adirondack-New England Mixed Forest | M211Dc | 18.9 | 2.8 | 11.6 |
Adirondack-New England Mixed Forest | M211Dd | 26.5 | 2.8 | 17.2 | |||||||
Adirondack-New England Mixed Forest | M211De | 9.8 | 18.0 | 13.6 | |||||||
mean | 10.7 | 13.0 | 11.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanberry, B.B. Forest Disturbance Types and Current Analogs for Historical Disturbance-Independent Forests. Land 2021, 10, 136. https://doi.org/10.3390/land10020136
Hanberry BB. Forest Disturbance Types and Current Analogs for Historical Disturbance-Independent Forests. Land. 2021; 10(2):136. https://doi.org/10.3390/land10020136
Chicago/Turabian StyleHanberry, Brice B. 2021. "Forest Disturbance Types and Current Analogs for Historical Disturbance-Independent Forests" Land 10, no. 2: 136. https://doi.org/10.3390/land10020136
APA StyleHanberry, B. B. (2021). Forest Disturbance Types and Current Analogs for Historical Disturbance-Independent Forests. Land, 10(2), 136. https://doi.org/10.3390/land10020136