Land Use and Global Environmental Change: An Analytical Proposal Based on A Systematic Review
Abstract
:1. Introduction
- (i)
- Urban policies and urban planning are powerful engines to promote and monitor the multiple uses of land while striving to affect the sustainable use of land.
- (ii)
- Land use presupposes multiple functionalities, whether economic or environmental, where impacts are effectively deployed and perceived through climate change.
2. Literature Review
2.1. Land: Possibilities and Uses
2.2. Land-Use Planning and Its Implications for Global Environmental Changes
3. Materials and Methods
4. Results
5. Discussion
Indicators and Evidence in the Context of Land Use
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | VOSViewer. VOSviewer. Available online: https://app.vosviewer.com/ (accessed on 19 November 2022). |
References
- Dias, F.T.; Pereira, D.M.; Clemente, C.M.S. The Urbanization Process and Space Producing Agents. Acad. Lett. 2021, 7, 1288–1293. [Google Scholar] [CrossRef]
- Briassoulis, H. Analysis of land use change: Theoretical and modeling approaches. In The Web Book of Regional Science; Loveridge, S., Ed.; Regional Research Institute, West Virginia University: Morgantown, WV, USA, 2000; Available online: www.rri.wvu.edu/regscweb.htm (accessed on 19 November 2022).
- Lambin, E.F.; Geist, H.J.; Lepers, E. Land-Use and Land-Cover Change in Tropical Regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Galeano-Barrera, C.J.; Ospina, M.E.A.; García, E.M.M.; Rico-Bautista, D.; Romero-Riaño, E. Exploring the Evolution of the Topics and Research Fields of Territorial Development from a Comprehensive Bibliometric Analysis. Sustainability 2022, 14, 6515. [Google Scholar] [CrossRef]
- Panagopoulos, T.; Cilliers, S.; Choi, J.; Kim, G. History of Seoul’s Parks and Green Space Policies: Focusing on Policy Changes in Urban Development. Land 2022, 11, 474. [Google Scholar] [CrossRef]
- Pierri, N. The historical and theoretical process that leads to the proposal of sustainable development. In Sustentabilidad? Desacuerdos Sobre el Desarrollo Sustantable, 1st ed.; Chang, M.Y., Ed.; Trabajo y Capital: Montevideo, Uruguay, 2001. [Google Scholar]
- Alves, P.B.R.; Rufino, I.A.A.; Feitosa, P.H.C.; Djordjević, S.; Javadi, A. Land-Use and Legislation-Based Methodology for the Implementation of Sustainable Drainage Systems in the Semi-Arid Region of Brazil. Sustainability 2020, 12, 661. [Google Scholar] [CrossRef] [Green Version]
- Escudero Gómez, L.A. Land at the Service of the Regional Growth Coalition: Projects of Special Interest in the Region of Castilla–La Mancha (Spain). Land 2021, 10, 875. [Google Scholar] [CrossRef]
- Ford, A.; Barr, S.; Dawson, R.; Virgo, J.; Batty, M.; Hall, J. A multi-scale urban integrated assessment framework for climate change studies: A flooding application. Comput. Environ. Urban Syst. 2019, 75, 229–243. [Google Scholar] [CrossRef]
- Cobbinah, P.B.; Asibey, M.O.; Opoku-Gyamfi, M.; Peprah, C. Urban planning and climate change in Ghana. J. Urban Manag. 2019, 8, 261–271. [Google Scholar] [CrossRef]
- Cai, Z.; Page, J.; Cvetkovic, V. Urban ecosystem vulnerability assessment of support climate-resilient city development. Urban Plan. 2021, 6, 227–239. [Google Scholar] [CrossRef]
- Hunter, G.W.; Sagoe, G.; Vettorato, D.; Jiayu, D. Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review. Sustainability 2019, 11, 4342. [Google Scholar] [CrossRef]
- Waiyasusri, K.; Chotpantarat, S. Watershed Prioritization of Kaeng Lawa Sub-Watershed, Khon Kaen Province Using the Morphometric and Land-Use Analysis: A Case Study of Heavy Flooding Caused by Tropical Storm Podul. Water 2020, 12, 1570. [Google Scholar] [CrossRef]
- Mitter, H.; Schmid, E. Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts. Ecol. Econ. 2020, 180, 106908. [Google Scholar] [CrossRef]
- Botezan, C.S.; Radovici, A.; Ajtai, I. The Challenge of Social Vulnerability Assessment in the Context of Land Use Changes for Sustainable Urban Planning—Case Studies: Developing Cities in Romania. Land 2021, 11, 17. [Google Scholar] [CrossRef]
- Uebelhor, E.; Hintz, O.; Mills, S.B.; Randall, A. Utility-Scale Solar in the Great Lakes: Analyzing Community Reactions to Solar Developments. Sustainability 2021, 13, 1677. [Google Scholar] [CrossRef]
- Beckwith, L. Cambodia’s resilience agenda: Understanding how local institutions and actors accept, contest and accommodate an externally driven approach. Geoforum 2022, 128, 125–134. [Google Scholar] [CrossRef]
- Hurlimann, A.; Moosavi, S.; Browne, G.R. Urban planning policy must do more to integrate climate change adaptation and mitigation actions. Land Use Policy 2021, 101, 105188. [Google Scholar] [CrossRef]
- Iwata, K.; Managi, S. Can land use regulations and taxes help mitigate vehicular CO 2 emissions? An empirical study of Japanese cities. Urban Policy Res. 2016, 34, 356–372. [Google Scholar] [CrossRef] [Green Version]
- Nasrollahzadeh, S.; Koramaz, T.K. Large-scale projects and land value changes in peripheral residential development in Istanbul. J. Hous. Built Environ. 2021, 37, 1221–1253. [Google Scholar] [CrossRef]
- Buzási, A.; Pálvölgyi, T.; Csete, M.S. Assessment of climate change performance of urban development projects—Case of Budapest, Hungary. Cities 2021, 114, 103215. [Google Scholar] [CrossRef]
- Ahmed, A.; Akanbang, B.A.A.; Poku-Boansi, M.; Derbile, E.K. Policy coherence between climate change adaptation and urban policies in Ghana: Implications for adaptation planning in African cities. Int. J. Urban Sustain. Dev. 2022, 14, 77–90. [Google Scholar] [CrossRef]
- Castro, L.M.; Lechthaler, F. The contribution of bio-economic assessments to better informed land-use decision making: An overview. Ecol. Eng. 2022, 174, 106449. [Google Scholar] [CrossRef]
- Davids, R.; Rouget, M.; Boon, R.; Roberts, D. Spatial analyses of threats to ecosystem service hotspots in Greater Durban, South Africa. PeerJ 2018, 6, e5723. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Kotval-K, Z. A Framework for Measuring Urban Sustainability in an Emerging Region: The City of Duhok as a Case Study. Sustainability 2019, 11, 5402. [Google Scholar] [CrossRef] [Green Version]
- Kalantari, Z.; Ferreira, C.S.S.; Page, J.; Goldenberg, R.; Olsson, J.; Destouni, G. Meeting sustainable development challenges in growing cities: Coupled social-ecological systems modeling of land use and water changes. J. Environ. Manag. 2019, 245, 471–480. [Google Scholar] [CrossRef]
- Zielinska-Dabkowska, K.M.; Xavia, K. Global Approaches to Reduce Light Pollution from Media Architecture and Non-Static, Self-Luminous LED Displays for Mixed-Use Urban Developments. Sustainability 2019, 11, 3446. [Google Scholar] [CrossRef] [Green Version]
- Gharaibeh, A.A.; AlZu’bi, E.M.; Abuhasson, L.B. Amman (City of Waters); Policy, Land Use, and Character Changes. Land 2019, 8, 195. [Google Scholar] [CrossRef] [Green Version]
- Gim, T.-H.T. Analyzing the city-level effects of land use on travel time and CO2 emissions: A global mediation study of travel time. Int. J. Sustain. Transp. 2022, 16, 496–513. [Google Scholar] [CrossRef]
- Pan, H.; Page, J.; Zhang, L.; Cong, C.; Ferreira, C.; Jonsson, E.; Näsström, H.; Destouni, G.; Deal, B.; Kalantari, Z. Understanding interactions between urban development policies and GHG emissions: A case study in Stockholm Region. Ambio 2020, 49, 1313–1327. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Kwak, Y.; Zhang, L.; Mosey, G.; Deal, B. Tightly Coupling Input Output Economics with Spatio-Temporal Land Use in a Dynamic Planning Support System Framework. Land 2021, 10, 78. [Google Scholar] [CrossRef]
- Ford, A.; Dawson, R.; Blythe, P.; Barr, S. Land-use transport models for climate change mitigation and adaptation planning. J. Transp. Land Use 2018, 11, 83–101. [Google Scholar] [CrossRef]
- Hörnschemeyer, B.; Söfker-Rieniets, A.; Niesten, J.; Arendt, R.; Kleckers, J.; Klemm, C.; Stretz, C.J.; Reicher, C.; Grimsehl-Schmitz, W.; Wirbals, D.; et al. The ResourcePlan—An Instrument for Resource-Efficient Development of Urban Neighborhoods. Sustainability 2022, 14, 1522. [Google Scholar] [CrossRef]
- Monteiro, R.; Ferreira, J.C.; Antunes, P. Green Infrastructure Planning Principles: Identification of Priorities Using Analytic Hierarchy Process. Sustainability 2022, 14, 5170. [Google Scholar] [CrossRef]
- Semeraro, T.; Scarano, A.; Pandey, R. Ecosystem Services Analysis and Design through Nature-Based Solutions in Urban Planning at a Neighbourhood Scale. Urban Sci. 2022, 6, 23. [Google Scholar] [CrossRef]
- Liu, H.; Xiao, W.; Li, Q.; Tian, Y.; Zhu, J. Spatio-Temporal Change of Multiple Ecosystem Services and Their Driving Factors: A Case Study in Beijing, China. Forests 2022, 13, 260. [Google Scholar] [CrossRef]
- Martins, G.D.A.; Theóphilo, C.R. Scientific Research Methodology for Applied Social Sciences, 3rd ed.; Atlas: São Paulo, Brazil, 2018. [Google Scholar]
- Mengist, W.; Soromessa, T.; Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. Methodsx 2020, 7, 100777. [Google Scholar] [CrossRef]
- Blanco, H.; Alberti, M.; Olshansky, R.; Chang, S.; Wheeler, S.M.; Randolph, J.; London, J.B.; Hollander, J.B.; Pallagst, K.M.; Schwarz, T.; et al. Shaken, shrinking, hot, impoverished and informal: Emerging research agendas in planning. Prog. Plan. 2009, 72, 195–250. [Google Scholar] [CrossRef]
- Robin, E.; Acuto, M. Global urban policy and the geopolitics of urban data. Politi. Geogr. 2018, 66, 76–87. [Google Scholar] [CrossRef]
- Zwierzchowska, I.; Fagiewicz, K.; Poniży, L.; Lupa, P.; Mizgajski, A. Introducing nature-based solutions into urban policy—Facts and gaps. Case study of Poznań. Land Use Policy 2019, 85, 161–175. [Google Scholar] [CrossRef]
- Jurgilevich, A.; Räsänen, A.; Juhola, S. Assessing the dynamics of urban vulnerability to climate change: Case of Helsinki, Finland. Environ. Sci. Policy 2021, 125, 32–43. [Google Scholar] [CrossRef]
- Xu, L.; Gao, J.; Lin, W.; Zhou, W. Differences in the ecological impact of climate change and urbanization. Urban Clim. 2021, 38, 100891. [Google Scholar] [CrossRef]
- Kim, Y.; Newman, G. Climate change preparedness: Comparing future urban growth and flood risk in Amsterdam and Houston. Sustainability 2019, 11, 1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, R.; Clarke, K.C.; Zhang, J.; Jia, X.; Feng, J.; Li, J. The impact of urbanization and climate change on ecosystem services: A case study of the city belt along the Yellow River in Ningxia, China. Comput. Environ. Urban Syst. 2019, 77, 101351. [Google Scholar] [CrossRef] [Green Version]
- Ochoa, C.Y.; Jiménez, D.F.; Olmo, R.M. Green Infrastructure Planning in Metropolitan Regions to Improve the Connectivity of Agricultural Landscapes and Food Security. Land 2020, 9, 414. [Google Scholar] [CrossRef]
- Boyd, D.; Pathak, M.; van Diemen, R.; Skea, J. Mitigation co-benefits of climate change adaptation: A case-study analysis of eight cities. Sustain. Cities Soc. 2022, 77, 103563. [Google Scholar] [CrossRef]
- Song, K.; Kim, M.; Kang, H.-M.; Ham, E.-K.; Noh, J.; Khim, J.S.; Chon, J. Stormwater runoff reduction simulation model for urban flood restoration in coastal area. Nat. Hazards 2022, 114, 2509–2526. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, X.; Wong, C. Integrated Land Governance for Eco-Urbanization. Sustainability 2016, 8, 903. [Google Scholar] [CrossRef] [Green Version]
- Fontoura, W.B.; Ribeiro, G.M. System Dynamics for Sustainable Transportation Policies: A Systematic Literature Review. Urbe Rev. Bras. Gestão Urbana 2021, 13, e20200259. [Google Scholar] [CrossRef]
- Lin, S.H.; Huang, X.; Fu, G.; Chen, J.T.; Zhao, X.; Li, J.H.; Tzeng, G.H. Evaluating the sustainability of urban renewal projects based on a model of hybrid multiple-attribute decision-making. Land Use Policy 2021, 108, 105570. [Google Scholar] [CrossRef]
Palavras-Chave (+ AND) | SCOPUS | Web of Science | Science Direct | Google Scholar * | Scielo | Total |
---|---|---|---|---|---|---|
“Environmental land use” AND “Urban Policy” AND “Climate Change” | 13 | 0 | 11 (1) ** | 39 (8) ** | 0 | 63 (22) ** |
“Environmental land use” AND “Urban Planning” AND “Climate Change” | 0 | 0 | 0 | 225 (10) ** | 0 | 225 (10)** |
“Economic land use” AND “Urban Policy” AND “Climate Change” | 3 | 0 | 7 (1) ** | 30 (3) ** | 0 | 40 (4) ** |
“Economic land use” AND “Urban Planning” AND “Climate Change” | 0 | 0 | 0 | 131 (10) ** | 0 | 131 (10) ** |
TOTAL | 16 | 0 | 18 (2) ** | 425 (31) ** | 0 | 459 (46) ** |
(i) Urban Policies and Urban Planning Are Powerful Engines to Promote and Monitor the Multiple Uses of Land, Strife for the Effective Sustainable Use of Land | ||
---|---|---|
(ii) Land Use Presupposes Multiple Functionalities, Whether Economic or Environmental, Where Impacts Are Effectively Deployed and Perceived through Climate Change | ||
Features | Description | Authors |
1: Environmental | Promotion of green cities, preservation of parks and green areas; improving environmental aspects and balances; introduction of adaptive climate change policies; containment of rainwater; ecosystem services. | [47]; [48]; [36]; [35]; [34]; [5]; |
2: Economic | Aiming at territorial development; implementation of decision-making based on bio-economic precepts; ecological urbanization; urban sustainability; transport systems. | [4,23]; [49]; [25]; [50]; |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, F.T.; Mazon, G.; Cembranel, P.; Birch, R.; de Andrade Guerra, J.B.S.O. Land Use and Global Environmental Change: An Analytical Proposal Based on A Systematic Review. Land 2023, 12, 115. https://doi.org/10.3390/land12010115
Dias FT, Mazon G, Cembranel P, Birch R, de Andrade Guerra JBSO. Land Use and Global Environmental Change: An Analytical Proposal Based on A Systematic Review. Land. 2023; 12(1):115. https://doi.org/10.3390/land12010115
Chicago/Turabian StyleDias, Felipe Teixeira, Gisele Mazon, Priscila Cembranel, Robert Birch, and José Baltazar Salgueirinho Osório de Andrade Guerra. 2023. "Land Use and Global Environmental Change: An Analytical Proposal Based on A Systematic Review" Land 12, no. 1: 115. https://doi.org/10.3390/land12010115
APA StyleDias, F. T., Mazon, G., Cembranel, P., Birch, R., & de Andrade Guerra, J. B. S. O. (2023). Land Use and Global Environmental Change: An Analytical Proposal Based on A Systematic Review. Land, 12(1), 115. https://doi.org/10.3390/land12010115