Agricultural Land Fragmentation at Urban Fringes: An Application of Urban-To-Rural Gradient Analysis in Adelaide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Urban-To-Rural Gradients at Urban Fringes
2.3. Landscape Matrix Analysis
3. Results
3.1. Agricultural Land-Use Presence
3.2. Agricultural Land Fragmentation
4. Discussion
4.1. Land Structure Analysis along Gradients
4.2. Agricultural Land in the Areas of Fragmentation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United Nations. The State of Asian and Pacific Cities 2015 Urban Transformations Shifting from Quantity to Quality; United Nations: New York, NY, USA, 2015; p. 204. [Google Scholar]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Mertes, C.; Tatem, A.; Tan, B.; Sulla-Menashe, D.; Graves, S.J.; Patel, N.N.; Horton, J.A.; Gaughan, A.E.; Rollo, J.T.; et al. A new urban landscape in East–Southeast Asia, 2000–2010. Environ. Res. Lett. 2015, 10, 034002. [Google Scholar] [CrossRef]
- Fragkias, M.; Langanke, T.; Boone, C.; Haase, D.; Marcotullio, P.J.; Munroe, D.; Olah, B.; Reenberg, A.; Seto, K.; Simon, D. Land Teleconnections in an Urbanizing World; GLP Workshop Report, GLP Report No. 5; Global Land Programme: Bern, Switzerland, 2012; p. 22. [Google Scholar]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Stefan, B.; Helmut, S.; Walter, P.; O'Brien, M.; Garcia, F.; Sims, R.; Howarth, R.W.; Kauppi, L.; Swilling, M.; Herrick, J. ASSESSING GLOBAL LAND USE: Balancing Consumption With Sustainable Supply; UNEP Publication: Nairobi, Kenya, 2014; p. 131. [Google Scholar]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Sun, X.; Zhu, X.; Li, Y.; Mei, L. Characterizing growth types and analyzing growth density distribution in response to urban growth patterns in peri-urban areas of Lianyungang City. Landsc. Urban Plan. 2012, 105, 425–433. [Google Scholar] [CrossRef]
- Debolini, M.; Valette, E.; François, M.; Chéry, J.-P. Mapping land use competition in the rural–urban fringe and future perspectives on land policies: A case study of Meknès (Morocco). Land Use Policy 2015, 47, 373–381. [Google Scholar] [CrossRef]
- Handayani, W. Rural-urban transition in Central Java: Population and economic structural changes based on cluster analysis. Land 2013, 2, 419–436. [Google Scholar] [CrossRef]
- Appiah, D.O.; Bugri, J.T.; Forkuor, E.K.; Boateng, P.K. Determinants of peri-urbanization and land use change patterns in peri-urban Ghana. J. Sustain. Dev. 2014, 7, 95–109. [Google Scholar] [CrossRef]
- Malaque, I.R.; Yokohari, M. Urbanization process and the changing agricultural landscape pattern in the urban fringe of Metro Manila, Philippines. Environ. Urban. 2007, 19, 191–206. [Google Scholar] [CrossRef]
- Piorr, A. Peri-Urbanisation in Europe: Towards European Policies to Sustain Urban-Rural Futures; Synthesis Report; PLUREL [Sixth Framework Programme]; Forest & Landscape, University of Copenhagen: Copenhagen, Denmark, 2011. [Google Scholar]
- Piorr, A.; Ravetz, J.; Tosics, I.; PLUREL. Peri-urbanisation in Europe: Towards European Policies to Sustain Urban-Rural Futures: Synthesis Report; Forest & Landscape: Copenhagen, Denmark, 2011. [Google Scholar]
- Matson, P.A.; Parton, W.J.; Power, A.; Swift, M. Agricultural intensification and ecosystem properties. Science 1997, 277, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Flynn, D.F.; Gogol-Prokurat, M.; Nogeire, T.; Molinari, N.; Richers, B.T.; Lin, B.B.; Simpson, N.; Mayfield, M.M.; DeClerck, F. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 2009, 12, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Shen, Y.; Ge, J.; Tateishi, R.; Tang, C.; Liang, Y.; Huang, Z. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landsc. Urban Plan. 2006, 75, 69–80. [Google Scholar] [CrossRef]
- Liu, J.; Hull, V.; Batistella, M.; DeFries, R.; Dietz, T.; Fu, F.; Hertel, T.W.; Izaurralde, R.C.; Lambin, E.F.; Li, S.; et al. Framing sustainability in a telecoupled world. Ecol. Soc. 2013, 18. [Google Scholar] [CrossRef]
- Jiang, Y.; Swallow, S.K. Providing an ecologically sound community landscape at the urban–rural fringe: A conceptual, integrated model. J. Land Use Sci. 2015, 10, 323–341. [Google Scholar] [CrossRef]
- Pham, V.C.; Pham, T.-T.-H.; Tong, T.H.A.; Nguyen, T.T.H.; Pham, N.H. The conversion of agricultural land in the peri-urban areas of Hanoi:(Vietnam): Patterns in space and time. J. Land Use Sci. 2014. [Google Scholar] [CrossRef]
- D’Amour, C.B.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2016. [Google Scholar] [CrossRef]
- Crossman, N.D.; Bryan, B.A.; Ostendorf, B.; Collins, S. Systematic landscape restoration in the rural–urban fringe: Meeting conservation planning and policy goals. Biodivers. Conserv. 2007, 16, 3781–3802. [Google Scholar] [CrossRef]
- Thapa, R.B.; Murayama, Y. Land evaluation for peri-urban agriculture using analytical hierarchical process and geographic information system techniques: A case study of Hanoi. Land Use Policy 2008, 25, 225–239. [Google Scholar] [CrossRef]
- Seto, K.C.; Sánchez-Rodríguez, R.; Fragkias, M. The new geography of contemporary urbanization and the environment. Annu. Rev. Environ. Resour. 2010, 35, 167–194. [Google Scholar] [CrossRef]
- Nagendra, H.; Unnikrishnan, H.; Sen, S. Villages in the city: Spatial and temporal heterogeneity in rurality and urbanity in Bangalore, India. Land 2013, 3, 1–18. [Google Scholar] [CrossRef]
- Rauws, W.; de Roo, G. Exploring transitions in the peri-urban area. Plan. Theory Pract. 2011, 12, 269–284. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, Y.; Pontius, R.G. Spatially-explicit simulation of urban growth through self-adaptive genetic algorithm and cellular automata modelling. Land 2014, 3, 719–738. [Google Scholar] [CrossRef]
- Irwin, E.G.; Bockstael, N.E. The evolution of urban sprawl: Evidence of spatial heterogeneity and increasing land fragmentation. Proc. Natl. Acad. Sci. USA 2007, 104, 20672–20677. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Rodolfo Dirzo, R.; Fischer, G.; Carl Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 257–284. [Google Scholar] [CrossRef]
- Luck, M.; Wu, J. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 2002, 17, 327–339. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, J.; Dong, J.; Chi, W.; Zhang, C. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: A CLUD-based analysis of their trajectories, patterns, and drivers. Landsc. Urban Plan. 2016, 145, 21–33. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Haase, D.; Nuissl, H. The urban-to-rural gradient of land use change and impervious cover: A long-term trajectory for the city of Leipzig. J. Land Use Sci. 2010, 5, 123–141. [Google Scholar] [CrossRef]
- Bunker, R.; Houston, P. Prospects for the Rural-Urban Fringe in Australia: Observations from a Brief History of the Landscapes around Sydney and Adelaide. Aust. Geogr. Stud. 2003, 41, 303–323. [Google Scholar] [CrossRef]
- Houston, P. Re-valuing the fringe: Some findings on the value of agricultural production in Australia’s peri-urban regions. Geogr. Res. 2005, 43, 209–223. [Google Scholar] [CrossRef]
- Kroll, F.; Müller, F.; Haase, D.; Fohrer, N. Rural–urban gradient analysis of ecosystem services supply and demand dynamics. Land Use Policy 2012, 29, 521–535. [Google Scholar] [CrossRef]
- Andersson, E.; Ahrné, K.; Pyykönen, M.; Elmqvist, T. Patterns and scale relations among urbanization measures in Stockholm, Sweden. Landsc. Ecol. 2009, 24, 1331–1339. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S. The Gradient Concept of Landscape Structure; Cambridge University Press: Cambridge, UK, 2005; Chapter 12. [Google Scholar]
- Godron, M.; Forman, R. Landscape Modification and Changing Ecological Characteristics, in Disturbance and Ecosystems; Springer: Berlin/Heidelberg, Germany, 1983; pp. 12–28. [Google Scholar]
- McDonnell, M.J.; Pickett, S.T.; Groffman, P.; Bohlen, P.; Pouyat, R.V.; Zipperer, W.C.; Parmelee, R.W.; Carreiro, M.M.; Medley, K. Ecosystem processes along an urban-to-rural gradient. Urban Ecosyst. 1997, 1, 21–36. [Google Scholar] [CrossRef]
- Weng, Y. Spatiotemporal changes of landscape pattern in response to urbanization. Landsc. Urban Plan. 2007, 81, 341–353. [Google Scholar] [CrossRef]
- McDonnell, M.J.; Hahs, A.K. The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: Current status and future directions. Landsc. Ecol. 2008, 23, 1143–1155. [Google Scholar] [CrossRef]
- Larondelle, N.; Haase, D. Urban ecosystem services assessment along a rural–urban gradient: A cross-analysis of European cities. Ecol. Indic. 2013, 29, 179–190. [Google Scholar] [CrossRef]
- Vizzari, M.; Sigura, M.; Antognelli, S.; Kovačev, I. Ecosystem services demand, supply and budget along the urban-rural-natural gradient. In Proceedings of the 43rd International Symposium on Agricultural Engineering, Actual Tasks on Agricultural Engineering, Opatija, Croatia, 24–27 February 2015. [Google Scholar]
- Forman, R.T.; Godron, M. Landscape Ecology; John Wiley & Sons: New York, NY, USA, 1986; p. 619. [Google Scholar]
- McDonnell, M.J.; Pickett, S.T.; Pouyat, R.V. The Application of the Ecological Gradient Paradigm to the Study of Urban Effects, in Humans as Components of Ecosystems; Springer: Berlin/Heidelberg, Germany, 1993; pp. 175–189. [Google Scholar]
- Vizzari, M.; Sigura, M. Landscape sequences along the urban–rural–natural gradient: A novel geospatial approach for identification and analysis. Landsc. Urban Plan. 2015, 140, 42–55. [Google Scholar] [CrossRef]
- Bridges, L.M.; Crompton, A.E.; Schaefer, J.A. Landscapes as gradients: The spatial structure of terrestrial ecosystem components in southern Ontario, Canada. Ecol. Complex. 2007, 4, 34–41. [Google Scholar] [CrossRef]
- Warren, P.S.; Ryan, R.L.; Lerman, S.B.; Tooke, K.A. Social and institutional factors associated with land use and forest conservation along two urban gradients in Massachusetts. Landsc. Urban Plan. 2011, 102, 82–92. [Google Scholar] [CrossRef]
- Shkaruba, A.; Kireyeu, V.; Likhacheva, O. Rural–urban peripheries under socioeconomic transitions: Changing planning contexts, lasting legacies, and growing pressure. Landsc. Urban Plan. 2016. [Google Scholar] [CrossRef]
- Joo, W.; Gage, S.H.; Kasten, E.P. Analysis and interpretation of variability in soundscapes along an urban–rural gradient. Landsc. Urban Plan. 2011, 103, 259–276. [Google Scholar] [CrossRef]
- Díaz-Varela, E.; Roces-Díaz, J.V.; Álvarez-Álvarez, P. Detection of landscape heterogeneity at multiple scales: Use of the Quadratic Entropy Index. Landsc. Urban Plan. 2016, 153, 149–159. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. Spatial Pattern Analysis Program for Quantifying Landscape Structure; Gen. Tech. Rep. PNW-GTR-351; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Corvallis, OR, USA, 1995.
- Zhang, Z.; Tu, Y.; Li, X. Quantifying the spatiotemporal patterns of urbanization along urban-rural gradient with a roadscape transect approach: A case study in Shanghai, China. Sustainability 2016, 8, 862. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Wu, J. The relationship between habitat loss and fragmentation during urbanization: An empirical evaluation from 16 World Cities. PLoS ONE 2016, 11, e0154613. [Google Scholar] [CrossRef] [PubMed]
- Wrbka, T.; Erb, K.-H.; Schulz, N.B.; Peterseil, J.; Hahn, C.; Haberl, H. Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators. Land Use Policy 2004, 21, 289–306. [Google Scholar] [CrossRef]
- Millington, A.C.; Velez-Liendo, X.M.; Bradley, A.V. Scale dependence in multitemporal mapping of forest fragmentation in Bolivia: Implications for explaining temporal trends in landscape ecology and applications to biodiversity conservation. ISPRS J. Photogramm. Remote Sens. 2003, 57, 289–299. [Google Scholar] [CrossRef]
- South Australian Government (Ed.) Character Preservation (McLaren Vale) Act 2012; Government of South Australia: Adelaide, SA, Australia, 2013.
- Ornetsmüller, C.; Verburg, P.H.; Heinimann, A. Scenarios of land system change in the Lao PDR: Transitions in response to alternative demands on goods and services provided by the land. Appl. Geogr. 2016, 75, 1–11. [Google Scholar] [CrossRef]
- Walcott, J.J.; Zuo, H.; Loch, A.D.; Smart, R.V. Patterns and trends in Australian agriculture: A consistent set of agricultural statistics at small areas for analysing regional changes. J. Land Use Sci. 2013, 9, 453–473. [Google Scholar] [CrossRef]
Original Land-Use Categories * | Reclassified Land-Use Classes (the numbers in parentheses are used in subsequent graphs) |
---|---|
Reserve, Forestry, Vacant | Conservation (1) |
Agriculture | Dryland agriculture (2) |
Livestock | Livestock (3) |
Horticulture | Horticulture (4) |
Commercial, Food Industry, Mine and Quarry, Public Institution, | Commercial (5) |
Residential, Non private residential, Vacant residential | Urban residential (6) |
Rural residential | Rural residential (7) |
Education, Golf, Recreation, Utility Industry | Services (8) |
Metric | Description | Range | Equation |
---|---|---|---|
Percent of land-use coverage (PLAND) [%] | The proportion of the total area occupied by a particular land-use class. | 0< PLAND ≤ 100 | |
Modified Simpson’s Diversity Index (MSDI) | A measurement of land-use diversity in a cell determined by the distribution of the proportional abundance of different land-use types (parcel richness) extensively. | MSDI ≥ 0 | |
Mean Parcel Size (MPS) [ha] | The average area of all land parcels in the landscape. | MPS > 0 | |
Parcel Density (PD) [N/km2] | The number of land parcels per 100ha. | PD > 1 |
Transect | Built-Up Area | Urban Fringe Areas | Rural Areas |
---|---|---|---|
North | 0–15 km. Low PLAND, high PD and low MPS for DL, LL and HL | 15–37 km. HL (61.4%), DL (31.6%) and LL (6.8%) representing mainly intensive vegetable production, rain-fed cereal cultivation, and sheep and horse grazing respectively. | >37 km. Dominated by DL (rain-fed wheat, barley and olives) which occupies large land parcels. |
East | 0–10 km. Low PLAND, high PD and low MPS for DL, LL, HL. | 11–32 km. LL (52.7%), HL (38.5%) and DL (8.7%) representing sheep and cattle rearing; vegetable cultivation, orchards and wineries; and rain-fed crops respectively. Relatively small MPS compared to other rural areas due to hilly terrain. | >32 km. Dominated by LL and DL. |
South | 0–18 km. Low PLAND, high PD and low MPS for DL, LL, HL. | 18–33 km. HL (60.1%), LL (39.2%) and DL (0.7%) representing the complex land use of McLaren Vale which has transitioned from a mixed grazing and horticulture region to a vineyards and olive groves with some grazing retained at the margins. | >33 km. High proportions of land in LL (cattle grazing). Increase in PLAND for residential land uses, and higher MSDI values at the end ofthe transect due to the influence of the town of Victor Harbor. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wadduwage, S.; Millington, A.; Crossman, N.D.; Sandhu, H. Agricultural Land Fragmentation at Urban Fringes: An Application of Urban-To-Rural Gradient Analysis in Adelaide. Land 2017, 6, 28. https://doi.org/10.3390/land6020028
Wadduwage S, Millington A, Crossman ND, Sandhu H. Agricultural Land Fragmentation at Urban Fringes: An Application of Urban-To-Rural Gradient Analysis in Adelaide. Land. 2017; 6(2):28. https://doi.org/10.3390/land6020028
Chicago/Turabian StyleWadduwage, Suranga, Andrew Millington, Neville D. Crossman, and Harpinder Sandhu. 2017. "Agricultural Land Fragmentation at Urban Fringes: An Application of Urban-To-Rural Gradient Analysis in Adelaide" Land 6, no. 2: 28. https://doi.org/10.3390/land6020028
APA StyleWadduwage, S., Millington, A., Crossman, N. D., & Sandhu, H. (2017). Agricultural Land Fragmentation at Urban Fringes: An Application of Urban-To-Rural Gradient Analysis in Adelaide. Land, 6(2), 28. https://doi.org/10.3390/land6020028