A Stochastic Poisson Structure
Abstract
:1. Introduction
2. A Brief Review on the Nualart-Pardoux Calculus
3. The Poisson Structure on the Nualart-Pardoux Test Algebra
Acknowledgments
References
- Dito, G. Star-product approach to quantum field theory: the free scalar field. Let. Math. Phys. 1990, 20, 125–134. [Google Scholar] [CrossRef]
- Dito, G. Star-products and nonstandard quantization for Klein-Gordon equation. J. Math. Phys. 1992, 33, 791–801. [Google Scholar] [CrossRef]
- Duetsch, M.; Fredenhagen, K. Perturbative algebraic field theory and deformation quantization. In “Mathematical physics in Mathematics and Physics”; Fields Inst. Commun. 30, A.M.S.; 2001; pp. 151–160. [Google Scholar]
- Dito, G. Deformation quantization on a Hilbert space. In Noncommutative geometry and physics; Maeda, Y., Ed.; World Scientific: Hackensack, NJ, USA, 2005; pp. 139–157. [Google Scholar]
- Dito, G.; Léandre, R. Stochastic Moyal product on the Wiener space. J. Math. Phys. 2007, 48, 023509. [Google Scholar] [CrossRef]
- Léandre, R. Deformation quantization in white noise analysis. In Geometric aspects of integrable systems; Calogero, F., Françoise, J.P., Marrero, J.C., Manojlovic, N., Nunes da Costa, J., Eds. S.I.G.M.A. 2007, 3, 027, (Electronic). [Google Scholar]
- Léandre, R. Deformation quantization in infinite-dimensional analysis. In Trends in Stochastic Analysis (Festchrift in honour of H.v. Weizsaecker), Kaiserslautern, Germany, 2007; Scheutzow, M., Moters, P., Blath, J., Eds.; Cambridge University Press: Cambridge, U.K., 2009; pp. 283–303. [Google Scholar]
- Léandre, R. Fedosov quantization in white noise analysis. In NEEDS 2007, Almetla-del-Mar, Spain, 2007; Gomez-Ullate, D., Hone, A., Lombardo, S., Puig i Sadurni, J., Eds. J. Nonlinear Math. Phys. 2018, 15 Supplement 3, 251–263, (Electronic). [Google Scholar]
- Léandre, R. Hochschild cohomology theories in white noise analysis. In Special issue on Deformation Quantization; Cattaneo, A., Dito, G., Kontsevich, M., Sternheimer, D., Eds. S.I.G.M.A. 2008, 4, 066, (Electronic). [Google Scholar]
- Odzijewicz, A.; Ratiu, T. Banach Lie-Poisson spaces and reduction. Comm. Math. Phys. 2003, 243, 1–54. [Google Scholar] [CrossRef]
- Mokhov, O.I. Differential geometry of symplectic and Poisson structures on loop spaces of smooth manifolds and integrable systems. In Loop spaces and groups of diffeomorphisms. Proc. Steklov. Inst. 1997, 217, 91–125. [Google Scholar]
- Dubrovin, B.; Novikov, S. Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory. Rus. Math. Survey. 1989, 44, 35–124. [Google Scholar] [CrossRef]
- Nualart, D.; Pardoux, E. Stochastic calculus with anticipating integrals. Probab. theory. rel. Field. 1988, 78, 535–581. [Google Scholar] [CrossRef]
- Léandre, R. Cohomologie de Bismut-Nualart-Pardoux et cohomologie de Hochschild entiere. In Séminaire de probabilités XXX en l’honneur de P.A. Meyer et J. Neveu; Azéma, J., Emery, M., Yor, M., Eds.; Lecture. Notes. Math 1626; Springer: Heidelberg, Germany, 1996; pp. 68–100. [Google Scholar]
- Léandre, R. Brownian cohomology of an homogeneous manifold. In New trends in stochastic analysis, A. Taniguchi Conference, Charingworth, England, 1994; Elworthy, K.D., Kusuoka, S., Shigekawa, I., Eds.; World Scientific: Singapore, Singapore, 1997; pp. 305–347. [Google Scholar]
- Léandre, R. Cover of the Brownian Bridge and stochastic symplectic action. Rev. Math. Phys. 2000, 12, 91–137. [Google Scholar] [CrossRef]
- Léandre, R. Stochastic Adams theorem for a general compact manifold. Rev. Math. Phys. 2001, 13, 1095–1134. [Google Scholar] [CrossRef]
- Léandre, R. Stochastic algebraic de Rham complexes. Acta. Appli. Mathematicae. 2003, 79, 217–247. [Google Scholar] [CrossRef]
- Lévy, P. Processus stochastiques et mouvement Brownien, 3rd ed.; Gauthier-Villars: Paris, France, 1992. [Google Scholar]
- Cameron, R.H. The first variation of an indefinite Wiener integral. Proc. Amer. Math. Soc. 1951, 2, 914–924. [Google Scholar] [CrossRef]
- Cameron, R.H.; Martin, W.T. Transformations of Wiener integrals under translations. Ann. of. Maths. 1944, 4, 386–396. [Google Scholar] [CrossRef]
- Léandre, R. Paths integrals in noncommutative geometry. In Encyclopedia of Mathematical Physics; Françoise, J.P., Naber, G.L., Tsun, T.S., Eds.; Elsevier: Oxford, UK, 2006; pp. 8–12. [Google Scholar]
- Léandre, R. Infinite Lebesgue distribution on a current group as an invariant distribution. In Foundations of Probability and Physics IV; Vaxjoe, Sweden, 2006; Adenier, G., Fuchs, C., Khrennikov, A., Eds.; AIP Proceedings 889, A.IP., Melville 2007; pp. 332–336. [Google Scholar]
- Léandre, R. Lebesgue measure in infinite dimension as an infinite dimensional distribution. In Conference in honour of Y.P. Solovyov, Moscow, Russia, 2005; Mishchenko, A., Ed.; Fundamental and applied mathematics (Russian/English) 2007, 13, 127–132. J. Math. Sci. 2009, 159, 833–836. [Google Scholar] [CrossRef]
- Léandre, R. Long time behaviour of the Wiener process on a path group. To appear in Group Theory: Classes, Representations and Connections, and Applications.
- Asada, A. Regularized Calculus: an application of zeta regularization to infinite dimensional geometry and analysis. Int. J. Geom. Mod. Phys. 2004, 1, 107–157. [Google Scholar]
- Pickrell, D. Invariant measures for unitary groups associated to Kac-Moody Lie alegras; Mem. A.M.S. 693; A.M.S.: Providence, USA, 2000. [Google Scholar]
- Neveu, J. Processus aléatoires gaussiens; Presses Univ. Montréal: Montréal, Canada, 1968. [Google Scholar]
- Kuo, H.H. Gaussian measures in Banach spaces; Lecture. Notes. Math. 463; Springer: Heidelberg, Germany, 1975. [Google Scholar]
- Ikeda, N.; Watanabe, S. Stochastic differential equations and diffusion processes, 2nd ed.; North-Holland: Amsterdan, The Netherlands, 1989. [Google Scholar]
- Malliavin, P. Stochastic calculus of variations and hypoelliptic operators. In Proceedings of the International Symposium on Stochastic Differential Equations, Kyoto, Japan, 1976; Itô, K., Ed.; Wiley: New-York, U.S.A., 1978; pp. 195–263. [Google Scholar]
- Nualart, D. The Malliavin Calculus and related topics; Springer: Heidelberg, Germany, 1995. [Google Scholar]
- Albeverio, S.; Hoegh-Krohn, R. Dirichlet forms and diffusion processes on rigged Hilbert spaces. Z.W. 1977, 40, 1–57. [Google Scholar] [CrossRef]
- Berezanskii, Y. The self adjointness of elliptic operators with an infinite number of variables. Ukrainian. Math. J. 1975, 27, 729–742. [Google Scholar] [CrossRef]
- Gross, L. Potential theory on a Hilbert space. Jour. Funct. Ana. 1967, 1, 123–181. [Google Scholar] [CrossRef]
- Hida, T. Analysis of Brownian functionals; Carleton. Maths. Lect. Notes. 13; Carleton University Press: Carleton, Canada, 1975. [Google Scholar]
© 2009 by the author; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license http://creativecommons.org/licenses/by/3.0/.
Share and Cite
Léandre, R. A Stochastic Poisson Structure. Symmetry 2009, 1, 55-63. https://doi.org/10.3390/sym1010055
Léandre R. A Stochastic Poisson Structure. Symmetry. 2009; 1(1):55-63. https://doi.org/10.3390/sym1010055
Chicago/Turabian StyleLéandre, Rémi. 2009. "A Stochastic Poisson Structure" Symmetry 1, no. 1: 55-63. https://doi.org/10.3390/sym1010055
APA StyleLéandre, R. (2009). A Stochastic Poisson Structure. Symmetry, 1(1), 55-63. https://doi.org/10.3390/sym1010055