Dark Matter as a Non-Relativistic Bose–Einstein Condensate with Massive Gravitons
Abstract
:1. Introduction
2. Self-Gravitating, Spherically Symmetric Bec Distribution in the Thomas-Fermi Approximation
2.1. Mass Density and the Gravitational Potential inside the Condensate
2.2. Gravitational Potential Outside the Condensate
3. Rotation Curves in Case of Massive Gravitons
4. Best-Fit Rotational Curves
4.1. Contribution of the Baryonic Matter in Newtonian and in Yukawa Gravitation
4.2. Testing Pure Baryonic and Baryonic + Dark Matter Models
5. Discussion and Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astrophys. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Young, B.L. A survey of dark matter and related topics in cosmology. Front. Phys. 2017, 12, 121201. [Google Scholar] [CrossRef]
- Plehn, T. Yet another introduction to Dark Matter. arXiv, 2017; arXiv:1705.01987. [Google Scholar]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of Dark Energy. Int. J. Mod. Phys. 2006, 15, 1753–1935. [Google Scholar] [CrossRef]
- Frieman, J.A.; Turner, M.S.; Huterer, D. Dark Energy and the accelerating universe. ARAA 2008, 46, 385–432. [Google Scholar] [CrossRef]
- Gergely, L.Á.; Tsujikawa, S. Effective field theory of modified gravity with two scalar fields: Dark energy and dark matter. Phys. Rev. Lett. 2014, 89, 064059. [Google Scholar] [CrossRef]
- Gergely, L.Á. Friedmann branes with variable tension. Phys. Rev. Lett. 2008, 78, 0084006. [Google Scholar] [CrossRef]
- Kleidis, K.; Spyrou, N.K. Polytropic dark matter flows illuminate dark energy and accelerated expansion. A&A 2015, 576, 23. [Google Scholar]
- Kleidis, K.; Spyrou, N. Dark Energy: The Shadowy Reflection of Dark Matter? Entropy 2016, 18, 94. [Google Scholar] [CrossRef]
- Das, S.; Bhaduri, R.K. Dark matter and dark energy from a Bose-Einstein condensate. Class. Quantum Gravity 2015, 32, 105003. [Google Scholar] [CrossRef]
- Das, S.; Bhaduri, R.K. Bose-Einstein condensate in cosmology. arXiv, 2018; arXiv:1808.10505. [Google Scholar]
- Hu, W.; Barkana, R.; Gruzinov, A. Fuzzy cold dark matter: the wave properties of ultralight particles. Phys. Rev. Lett. 2000, 85, 1158–1161. [Google Scholar] [CrossRef] [PubMed]
- Ureña-López, L.A. Bose-Einstein condensation of relativistic Scalar Field Dark Matter. J. Cosmol. Astropart. Phys. 2009, 1, 014. [Google Scholar] [CrossRef]
- Sinha, K.P.; Sivaram, C.; Sudarshan, E.C.G. Aether as a superfluid state of particle-antiparticle pairs. Found. Phys. 1976, 6, 65–70. [Google Scholar] [CrossRef]
- Sinha, K.P.; Sivaram, C.; Sudarshan, E.C.G. The superfluid vacuum state, time-varying cosmological constant, and nonsingular cosmological models. Found. Phys. 1976, 6, 717–726. [Google Scholar] [CrossRef]
- Bohua Li, M.A. Cosmology with Bose-Einstein-Condensed Scalar Field Dark Matter. Master’s Thesis, The University of Texas at Austin, Austin, TX, USA, 2013. [Google Scholar]
- Morikawa, M. Structure Formation through Cosmic Bose Einstein Condensation Unified View of Dark Matter and Energy. In Proceedings of the 22nd Texas Symposium on Relativistic Astrophysics at Stanford University, Stanford, CA, USA, 13–17 December 2004. [Google Scholar]
- Fukuyama, T.; Morikawa, M. The relativistic gross-pitaevskii equation and cosmological bose-einstein condensation quantum structure in the universe. Prog. Theor. Phys. 2006, 115, 1047–1068. [Google Scholar] [CrossRef]
- Moffat, J.W. Spectrum of cosmic microwave fluctuations and the formation of galaxies in a modified gravity theory. arXiv, 2016; arXiv:astro-ph/0602607. [Google Scholar]
- Wang, X.Z. Cold Bose stars: Self-gravitating Bose-Einstein condensates. Phys. Rev. D 2001, 64, 124009. [Google Scholar] [CrossRef]
- Böhmer, C.G.; Harko, T. Can dark matter be a Bose Einstein condensate? J. Cosmol. Astropart. Phys. 2007, 6, 025. [Google Scholar] [CrossRef]
- Harko, T.; Mocanu, G. Cosmological evolution of finite temperature Bose-Einstein condensate dark matter. Phys. Rev. D 2012, 85, 084012. [Google Scholar] [CrossRef]
- Sikivie, P. Dark Matter Axions. Int. J. Mod. Phys. A 2010, 25, 554–563. [Google Scholar] [CrossRef]
- Dvali, G.; Gomez, C. Black Hole’s Quantum N-Portrait. arXiv, 2011; arXiv:1112.3359. [Google Scholar]
- Chavanis, P.H. Growth of perturbations in an expanding universe with Bose-Einstein condensate dark matter. A&A 2012, 537, A127. [Google Scholar]
- Kain, B.; Ling, H.Y. Cosmological inhomogeneities with Bose-Einstein condensate dark matter. Phys. Rev. D 2012, 85, 023527. [Google Scholar] [CrossRef]
- Suárez, A.; Robles, V.H.; Matos, T. A review on the scalar field/Bose-Einstein condensate dark matter model. Accel. Cosmic Expans. 2014, 38, 107–142. [Google Scholar]
- Ebadi, Z.; Mirza, B.; Mohammadzadeh, H. Infinite statistics condensate as a model of dark matter. J. Cosmol. Astropart. Phys. 2013, 11, 057. [Google Scholar] [CrossRef]
- Dwornik, M.; Keresztes, Z.; Gergely, L.A. Rotation curves in Bose-Einstein Condensate Dark Matter Halos. In Recent Development in Dark Matter Research; Kinjo, N., Nakajima, A., Eds.; Nova Science Publishers: New York, NY, USA, 2014; pp. 195–219. [Google Scholar]
- Bettoni, D.; Colombo, M.; Liberati, S. Dark matter as a Bose-Einstein Condensate: The relativistic non-minimally coupled case. J. Cosmol. Astropart. Phys. 2014, 2, 004. [Google Scholar] [CrossRef]
- Gielen, S. Quantum cosmology of (loop) quantum gravity condensates: An example. Classi. Quantum Gravity 2014, 31, 155009. [Google Scholar] [CrossRef]
- Schive, H.Y.; Chiueh, T.; Broadhurst, T. Cosmic structure as the quantum interference of a coherent dark wave. Nat. Phys. 2014, 10, 496–499. [Google Scholar] [CrossRef] [Green Version]
- Davidson, S. Axions: Bose Einstein condensate or classical field? Astropart. Phys. 2015, 65, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.F.; Das, S. Stringent theoretical and experimental bounds on graviton mass. Int. J. Mod. Phys. D 2016, 25, 1644001. [Google Scholar] [CrossRef] [Green Version]
- Dwornik, M.; Keresztes, Z.; Kun, E.; Gergely, L.A. Bose-Einstein condensate Dark Matter halos confronted with galactic rotation curves. Adv. High Energy Phys. 2017, 4025386, 14. [Google Scholar] [CrossRef]
- Gross, E.P. Structure of a quantized vortex in boson systems. Nuovo Cim. 1961, 20, 454. [Google Scholar] [CrossRef]
- Gross, E.P. Hydrodynamics of a superfluid condensate. J. Math. Phys. 1963, 4, 195. [Google Scholar] [CrossRef]
- Pitaevskii, L.P. Vortex lines in an imperfect bose gas. Sov. Phys. JETP 1961, 13, 451. [Google Scholar]
- Rogel-Salazar, J. The Gross-Pitaevskii equation and Bose-Einstein condensates. Eur. J. Phys. 2013, 34, 247. [Google Scholar] [CrossRef]
- Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Thermodynamics of a trapped Bose-condensed gas. J. Low Temp. Phys. 1997, 109, 309. [Google Scholar] [CrossRef]
- Lieb, E.H.; Seiringer, R.; Yngvason, J. Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional. arXiv, 2000; arXiv:math-ph/9908027. [Google Scholar]
- Swaters, R.A. Dark Matter in Late-type Dwarf Galaxies. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 1999. [Google Scholar]
- Swaters, R.A.; Balcells, M. The Westerbork HI survey of spiral and irregular galaxies. II. R-band surface photometry of late-type dwarf galaxies. A&A 2002, arXiv:astro-ph/0204526390, 863–878. [Google Scholar]
- Swaters, R.A.; Sancisi, R.; van Albada, T.S.; van der Hulst, J.M. The rotation curves shapes of late-type dwarf galaxies. A&A 2009, arXiv:0901.4222493, 871–892. [Google Scholar]
- Freeman, K.C. On the Disks of Spiral and S0 Galaxies. Astrophys. J. 1970, 160, 811. [Google Scholar] [CrossRef]
- De Araujo, J.C.N.; Miranda, O.D. A solution for galactic disks with Yukawian gravitational potential. Gen. Relativ. Gravit. 2007, 39, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Binney, J.; Merrifield, M. Galactic Astronomy; Princeton University Press: Princeton, NJ, USA, 1998. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pure Baryonic | Baryonic + BEC with | Baryonic + BEC with | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID | b | sign. lev. | sign. lev. | |||||||||||
UGC12060 | 0.7 | 0.90 | 11.23 | 155 | 5.50 ± 0.33 | 1.07 ± 0.11 | 2.650 ± 0.118 | 1.78 ± 0.16 | 1.69 | [7.3 ÷ 10.6] | ||||
UGC7278 | 6.1 | 0.49 | 2.59 | 499 | 0.81 ± 0.06 | 3.53 ± 0.23 | 1.702 ± 0.048 | 4.32 ± 0.24 | 7.91 | [4.6 ÷ 6.8] | ||||
UGC6446 | 1.9 | 1.00 | 3.89 | 809 | 1.37 ± 0.11 | 1.02 ± 0.09 | 3.040 ± 0.128 | 1.36 ± 0.11 | 7.91 | [9.2 ÷ 10] | ||||
UGC3851 | 0.5 | 1.80 | 2.74 | 86 | 0.74 ± 0.18 | 1.91 ± 0.22 | 1.509 ± 0.038 | 5.50 ± 0.28 | 11.30 | [4.3 ÷ 5.5] | ||||
UGC7125 | 1.2 | 2.20 | 4.50 | 285 | 1.78 ± 0.18 | 2.26 ± 0.21 | 2.670 ± 0.071 | 1.76 ± 0.93 | 11.82 | [8.2 ÷ 8.6] | ||||
UGC3711 | 5.2 | 0.46 | 4.40 | 232 | 2.00 | 8.06 | 1.212 | - | 5.11 | - | - | - | - | |
UGC4499 | 1.4 | 0.75 | 6.30 | 603 | 1.00 | 1.34 | 2.590 | - | 8.51 | - | - | - | - | |
UGC7603 | 2.1 | 1.00 | 1.88 | 462 | 0.40 | 1.07 | 2.470 | - | 13.46 | - | - | - | - | |
UGC8490 | 2.8 | 0.40 | 9.52 | 1350 | 4.06 | 3.35 | 1.715 | - | 40.27 | - | - | - | - | |
UGC5986 | 4.4 | 1.20 | 3.95 | 1682 | 0.48 | 3.17 | 2.620 | - | 32.12 | - | - | - | - | |
UGC1281 | 1.0 | 1.60 | 1.33 | 231 | 0.53 | 0.75 | 3.70 | - | 48.74 | - | - | - | - | |
UGC5721 | 4.9 | 0.40 | 5.79 | 1388 | 1.75 | 2.84 | 1.982 | - | 88.56 | - | - | - | - |
ID | ||||
---|---|---|---|---|
UGC12060 | ||||
UGC7278 | ||||
UGC6446 | ||||
UGC3851 | ||||
UGC7125 |
ID | ||
---|---|---|
kg | kg | |
UGC12060 | ||
UGC7278 | ||
UGC6446 | ||
UGC3851 | ||
UGC7125 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kun, E.; Keresztes, Z.; Das, S.; Gergely, L.Á. Dark Matter as a Non-Relativistic Bose–Einstein Condensate with Massive Gravitons. Symmetry 2018, 10, 520. https://doi.org/10.3390/sym10100520
Kun E, Keresztes Z, Das S, Gergely LÁ. Dark Matter as a Non-Relativistic Bose–Einstein Condensate with Massive Gravitons. Symmetry. 2018; 10(10):520. https://doi.org/10.3390/sym10100520
Chicago/Turabian StyleKun, Emma, Zoltán Keresztes, Saurya Das, and László Á. Gergely. 2018. "Dark Matter as a Non-Relativistic Bose–Einstein Condensate with Massive Gravitons" Symmetry 10, no. 10: 520. https://doi.org/10.3390/sym10100520
APA StyleKun, E., Keresztes, Z., Das, S., & Gergely, L. Á. (2018). Dark Matter as a Non-Relativistic Bose–Einstein Condensate with Massive Gravitons. Symmetry, 10(10), 520. https://doi.org/10.3390/sym10100520