On the Role of Unitary-Symmetry for the Foundation of Probability and Time in a Realist Approach to Quantum Physics
Abstract
:1. Introduction
2. Probabilities
2.1. Quantum Physics
2.2. Permutation Symmetry
2.3. The Born-Rule
2.4. Frequencies
3. The Notion of “Time”
3.1. Identity and Change
3.2. Dynamics
3.3. Quanta of Time
3.4. Thermal Flow
4. Space-Time
4.1. Speed of Light
4.2. Covariance
5. Consequences
Funding
Conflicts of Interest
References
- Lewis, P.J. Phenomena and Theory. In Quantum Ontology, 1st ed.; Oxford University Press: New York, NY, USA, 2016; pp. 22–24. ISBN 978-0190469818. [Google Scholar]
- Weinberg, S. Symmetry: A “Key to Nature’s Secrets”. The New York Review of Books, October 2011. [Google Scholar]
- Childers, T. Philosophy & Probability, 1st ed.; Oxford University Press: New York, NY, USA, 2013; ISBN 978-0199661831. [Google Scholar]
- Gleason, A.M. Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 1957, 6, 885–893. [Google Scholar] [CrossRef]
- Bohr, A.; Ulfbeck, O. Genuine Fortuitousness: Where Did That Click Come From? Found. Phys. 2001, 31, 757–774. [Google Scholar] [CrossRef]
- Caves, M.C.; Fuchs, C.A.; Schack, R. Subjective probability and quantum certainty. Stud. Hist. Philos. Sci. Part B 2007, 38, 255–274. [Google Scholar] [CrossRef] [Green Version]
- Saunders, S.; Barrett, J.; Kent, A.; Wallace, D. (Eds.) Many Worlds? 1st ed.; Oxford University Press: Oxford, UK, 2010; ISBN 978-0-19-956056-1. [Google Scholar]
- Albert, D.; Loewer, B. Interpreting the many-worlds interpretation. Synthese 1988, 77, 195–213. [Google Scholar] [CrossRef]
- Hardy, L. Quantum Theory from Five Reasonable Axioms. arXiv, 2001; arXiv:quant-ph/0101012. [Google Scholar]
- Schack, R. Quantum Theory from Four of Hardy’s Axioms. Found. Phys. 2003, 10, 1461–1468. [Google Scholar] [CrossRef]
- Schlatter, A. Quantum Probabilities and Maximum Entropy. Entropy 2017, 19, 304. [Google Scholar] [CrossRef]
- Born, M. Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik 1926, 37, 863–867. [Google Scholar] [CrossRef]
- Zurek, W.H. Environment-assisted invariance, entanglement and probabilities in quantum physics. Phys. Rev. Lett. 2003, 90, 120404. [Google Scholar] [CrossRef]
- Caves, C.M.; Fuchs, C.A.; Schack, R. Quantum probabilities as Bayesian probabilities. Phys. Rev. A 2002, 65, 022305. [Google Scholar] [CrossRef]
- Margolus, N.; Levitin, L.B. The maximum speed of dynamical evolution. Physica D 1998, 120, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Lubkin, E. Keeping the Entropy of Measurement: Szilard revisited. Int. J. Theor. Phys. 1987, 26, 523–534. [Google Scholar] [CrossRef]
- Connes, A.; Rovelli, C. Von Neumann Algebra Automorphisms and Time-Thermodynamics Relation in Generally Covariant Quantum Theories. Class. Quant. Grav. 1994, 11, 2899–2917. [Google Scholar] [CrossRef]
- Martinetti, P.; Rovelli, C. Diamond’s Temperature: Unruh effect for bounded trajectories and thermal time hypothesis. Class. Quant. Grav. 2003, 20, 4919–4932. [Google Scholar] [CrossRef]
- Schlatter, A. On the Principle of Synchronization. Entropy 2018, 20, 741. [Google Scholar] [CrossRef]
- Kastner, R.E. On Quantum Collapse as a Basis for the Second Law of Thermodynamics. Entropy 2017, 19, 106. [Google Scholar] [CrossRef]
- Gibbons, G.; Hawking, S. Cosmological Event Horizons, Thermodynamics, and Particle Creation. Phys. Rev. D 1977, 15, 2738–2751. [Google Scholar] [CrossRef]
- Gisin, A. Impossibility of covariant, deterministic non local hidden-variable extensions of quantum theory. Phys. Rev. A 2011, 83, 020102. [Google Scholar] [CrossRef]
- Dürr, D.; Lazarovici, D. Nichtlokalität durch Retrokausalität. In Verständliche Quantenmechanik, 1st ed.; Springer Spektrum, Springer-Verlag GmbH: Heidelberg, Germany, 2018; pp. 215–217. ISBN 978-3-662-55888-1. [Google Scholar]
- Bell, J.S. La Nouvelle cuisine. In Speakable and Unspeakable in Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2004; pp. 232–248. ISBN 9780521523387. [Google Scholar]
- Hensen, B.; Bernien, H.; Dréau, A.E.; Reiserer, A.; Kalb, N.; Blok, M.S.; Ruitenberg, J.; Vermeulen, R.F.; Schouten, R.N.; Abellán, C.; et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 km. Nature 2015, 526, 682–686. [Google Scholar] [CrossRef]
- Leifer, M.S.; Pusey, M.F. Is a time symmetric interpretation of quantum theory possible without retrocausality? Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 2017, 473, 20160607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, H. Toy models for retrocausality. Stud. Hist. Philos. Mod. Phys. 2008, 39, 752–761. [Google Scholar] [CrossRef] [Green Version]
- Adlam, E. Spooky Action at a Temporal Distance. Entropy 2018, 20, 41. [Google Scholar] [CrossRef]
- Maudlin, T. Three measurement problems. Topoi 1995, 14, 7–15. [Google Scholar] [CrossRef]
- Elitzur, A.C.; Dolev, S.; Zeilinger, A. Time reversed epr and the choice of histories in quantum mechanics. In Proceedings of XXII Solvay Conference in Physics. Special Issue, Quantum Computers and Computing; World Scientific: London, UK, 2002; pp. 452–461. [Google Scholar]
- Aharonov, Y.; Bergmann, P.G.; Lebowitz, J.L. Time Symmetry in the Quantum Process of Measurement. Phys. Rev. B 1964, 134, 1410. [Google Scholar] [CrossRef]
- Kastner, R.E. The Possibilist Transactional Interpretation and Relativity. Found. Phys. 2012, 42, 1094–1113. [Google Scholar] [CrossRef]
- Elitzur, A.C.; Dolev, S. Becoming as a Bridge between Quantum Mechanics and Relativity. In Endophysics, Time, Quantum and the Subjective; Saniga, M., Buccheri, R., Elitzur, A.C., Eds.; World Scientific Publishing Co.: Singapore, 2005; pp. 197–201. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlatter, A. On the Role of Unitary-Symmetry for the Foundation of Probability and Time in a Realist Approach to Quantum Physics. Symmetry 2018, 10, 737. https://doi.org/10.3390/sym10120737
Schlatter A. On the Role of Unitary-Symmetry for the Foundation of Probability and Time in a Realist Approach to Quantum Physics. Symmetry. 2018; 10(12):737. https://doi.org/10.3390/sym10120737
Chicago/Turabian StyleSchlatter, Andreas. 2018. "On the Role of Unitary-Symmetry for the Foundation of Probability and Time in a Realist Approach to Quantum Physics" Symmetry 10, no. 12: 737. https://doi.org/10.3390/sym10120737