Some Generating Functions for q-Polynomials
Abstract
:1. Introduction
Mathematical and Physical Applications
2. The Bateman, Sylvester, Pasternack, and Cesàro Polynomials
3. The -Analogues of the Bateman, Sylvester, Pasternack, and Cesàro Polynomials
4. The Generating Functions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Koekoek, R.; Lesky, P.A.; Swarttouw, R.F. Hypergeometric Orthogonal Polynomials and Their q-Analogues; Springer Monographs in Mathematics; With a foreword by Tom H. Koornwinder; Springer-Verlag: Berlin, Germany, 2010. [Google Scholar]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series, 2nd ed.; Encyclopedia of Mathematics and its Applications; With a foreword by Richard Askey; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Bateman, H. Two systems of polynomials for the solution of Laplace’s integral equation. Duke Math. J. 1936, 2, 569–577. [Google Scholar] [CrossRef]
- Sylvester, J.J. Sur la valeur moyenne des coefficients dans le développement d’un déterminant gauche ou symétrique d’un ordre infiniment grand et sur les déterminants doublement gauches. C. R. de l’Académie des Sci. 1879, 89, 24–26. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; Robert E. Krieger Publishing Co. Inc.: Melbourne, Australia, 1981. [Google Scholar]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Ellis Horwood Series: Mathematics and its Applications; Ellis Horwood Ltd.: Chichester, UK, 1984; p. 569. [Google Scholar]
- Rainville, E.D. Special Functions; The Macmillan Co.: New York, NY, USA, 1960. [Google Scholar]
- Bateman, H. Some Properties of a certain Set of Polynomials. Tohoku Math. J. First Ser. 1933, 37, 23–38. [Google Scholar]
- Pasternack, S. A generalization of the polynomial Fn(x). Lond. Edinb. Dublin Philos. Mag. J. Sci. Ser. 7 1939, 28, 209–226. [Google Scholar]
- Koelink, H.T. On Jacobi and continuous Hahn polynomials. Proc. Am. Math. Soc. 1996, 124, 887–898. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Manocha, H.L. On some new generating functions. Matematicki Vesnik 1980, 4, 395–402. [Google Scholar]
- Srivastava, H.M.; Lavoie, J.L.; Tremblay, R. The Rodrigues Type Representations for a Certain Class of Special Functions. Annali di Matematica Pura ed Applicata 1979, 119, 9–24. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T.K. q-Bernoulli polynomials and q-umbral calculus. Sci. China Math. 2014, 57, 1867–1874. [Google Scholar] [CrossRef]
- Asif, M. On Some Problems in Special Functions. Ph.D. Thesis, Aligarh Muslim University, Aligarh, India, 2010. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohl, H.S.; Costas-Santos, R.S.; Wakhare, T.V. Some Generating Functions for q-Polynomials. Symmetry 2018, 10, 758. https://doi.org/10.3390/sym10120758
Cohl HS, Costas-Santos RS, Wakhare TV. Some Generating Functions for q-Polynomials. Symmetry. 2018; 10(12):758. https://doi.org/10.3390/sym10120758
Chicago/Turabian StyleCohl, Howard S., Roberto S. Costas-Santos, and Tanay V. Wakhare. 2018. "Some Generating Functions for q-Polynomials" Symmetry 10, no. 12: 758. https://doi.org/10.3390/sym10120758
APA StyleCohl, H. S., Costas-Santos, R. S., & Wakhare, T. V. (2018). Some Generating Functions for q-Polynomials. Symmetry, 10(12), 758. https://doi.org/10.3390/sym10120758