Next Article in Journal
Towards Shape-Changing Devices: Physical Interface Control with an Active Contour Model
Next Article in Special Issue
Polarized Light-Induced Molecular Orientation Control of Rigid Schiff Base Ni(II), Cu(II), and Zn(II) Binuclear Complexes as Polymer Composites
Previous Article in Journal
Symmetric Representation of Ternary Forms Associated to Some Toeplitz Matrices
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Organophosphines in Cis-PtP2CCl Derivatives Structural Aspects

1
Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovak Republic
2
Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovak Repubic
3
Department of Chemistry, York University, 4700 Keele st., Toronto, ON M3J 1P3, Canada
*
Author to whom correspondence should be addressed.
Symmetry 2018, 10(3), 56; https://doi.org/10.3390/sym10030056
Submission received: 11 January 2018 / Revised: 19 February 2018 / Accepted: 21 February 2018 / Published: 28 February 2018
(This article belongs to the Special Issue Symmetry in Coordination Chemistry)

Abstract

:
This manuscript summarizes and analyzes X-ray data of monomeric cis-PtP2CCl derivatives. These complexes crystallize in the following crystal systems: tetragonal, P42/n (3), triclinic, Pī (10), orthorhombic, P212121 (prevails)(16), and monoclinic, P21/c (prevails) (36) examples. There are three sub-groups of the respective complexes: Pt(η1-PL)21-CL)(η1-Cl); Pt(η2-P2L)(η1-CL)(η1-Cl) and Pt(η1-PL)(η2-P,CL)(η1-Cl). The chelating P,P-donor ligands form: four-(POP, PCP), five-(PC2P), six-(PC3P, PCNCP), seven-(PC4P) and even ten-(PCNCNCNCP) membered rings. The chelating P.C-donor ligands create three-(PC), four-(PCC) and five-(PC2C) membered rings. The mean Pt-L bond distance elongates in the sequence: 2.10 Å (C, trans to P) < 2.222 Å (P, trans to Cl) < 2.312 Å (P, trans to C) < 2.360 Å (Cl, trans to P). There are examples which exist in two isomeric forms, of the distortion isomer type.

Graphical Abstract

1. Introduction

Organophosphines ligands are very attractive and useful in the chemistry of platinum [1]. There are several hundred organoplatinum complexes which were studied by the X-ray method. Struct5ural data of organoplatinum complexes of the types cis-PtP2C2 [2], PtPC3 and PtP2CX (X = H, F or OL) [3], and PtP2CX (X = N/L or BL) [4] we reviewed.
The aim of this manuscript is to classify and analyze structural data of cis-PtP2CCl derivatives. The structures are arranged in the sequence of increasing number of atoms in the respective metallocyclic rings.

2. Cis-PtP2CCl Derivatives

There are over sixty examples of this coordination sphere for which structural parameters are available. These complexes from a coordination mode of the respective ligands viewpoint are divided into the three sub-groups: Pt(η1-PL)21-CL)(η1-Cl), Pt(η2-P2L)(η1-CL)(η1-Cl) and Pt(η1-PL)(η2-P,CL)(η1-Cl).

2.1. Cis-Pt(η1-PL)21-CL)(η1-Cl)

In seventeen examples, only monodentate ligands form cis-configurations with an inner coordination sphere of PtP2CCl type. These are mostly colorless or yellow, and crystallize in three crystal systems: triclinic (3), orthorhombic (5) and monoclinic (9) examples. Such complexes are: [Pt(PMe3)21-C8H5BN(SiMe3)2}(Cl)] [5], [Pt(PEt3)21-C5H2Ph2}(Cl)] [6], [Pt(PEt3)2(Et)(Cl)] [7], [Pt(PEt3)2(C6F5)(Cl)] [8], [Pt(PEt3)21-C(SMe)=CHPh}(Cl)] [9], [Pt(PPh3)21-F2C=CC(Cl)(F2)}(Cl)] [10], [Pt(PPh3)2(CH2PPh3)(Cl)]CH2Cl2 [11,12], [Pt(PPh3)2{CH2C(O)CH2Cl}(Cl)] [13], [Pt(PPh3)21-C6H4OPh}(Cl)] [14], [Pt(PPh3)21-C8H15N2}(Cl)]BF4.CH2Cl2 [15], [Pt(PPh3)21-C11H19N2}(Cl)]BF4.CH2Cl2 [15], [Pt(PPh3)21-C10H11ClN2SSi}(Cl)]C4H8O [16], [Pt(PPh3)21-C8H12N2}(Cl)]BF4 [17], [Pt{P(H)Mes2}2(Me)(Cl)] [18], [Pt(Ph2PC≡CPh)2(Me)(Cl)].0.5CH2Cl2 [19], [Pt{P(NC5H4OS)Ph2}2(Me)(Cl)]CHCl3 [20], and [Pt{P(η2-C7H5NO)Ph}2(Me)(Cl)]PriOH [21]. The structure of [Pt(PPh3)21-C8H12N2}(Cl)]+ [17] is shown in Figure 1 as an example.
The mean Pt-L bond distance elongates in the order: 2.086 Å (C, trans to P) < 2.234 Å (P, trans to Cl) < 2.340 Å (P, trans to C) < 2.370 Å (Cl, trans to P). The cis-L-Pt-L bond angles (mean values) open in the sequence: 85.5° (C-Pt-Cl), (Cl-Pt-P) < 90.3° (C-Pt-P) < 98.9° (P-Pt-P). The mean values of trans-L-Pt-L bond angles are 169.5° (C-Pt-P) and 174.5° (Cl-Pt-P). The sum of all four bond distances (Pt-P(x2) + Pt-C + Pt-Cl) is 9.03 Å.

2.2. Cis-Pt(η2-P2L)(η1-CL)(η1-Cl)

There are over forty such complexes which crystallize in four crystal systems: tetragonal (3), triclinic (6), orthorhombic (9) and monoclinic (24) examples. The structures are arranged in the order of increasing number of atoms in the respective metallocycle. In three complexes: [Pt(η2-POPL){η1-C(Cl)=CCl2}(Cl)] [22], [Pt{η2-Ph2PCH2PPh2}(C6F5)(Cl)] [23] and [Pt{η2-But2PCH2PBut2}(η1-C8H3F6)(Cl)] [24] each chelating-P,P donor ligand forms a four-membered metallocyclic ring with values of the P-Pt-P bite angles of 70.6° (POP) [22] and 73.8° (PCP) (mean) [23,24].
In another twenty five complexes: [Pt{η2Ph2PCH=CHPPh2}(CF3)(Cl)] [25], [Pt{η2-Ph2PCH=CHPPh2}(η1-allyl)(Cl)] [26], [Pt{η2-Me2P(CH2)2PMe2}(C6F5)(Cl)]CH2Cl2 [27], [Pt{η2-Pri2P(CH2)2PPri2}(Ph)(Cl)] [28], [Pt{η2-Ph2P(CH2)2PPh2}(C6F5)(Cl)]pyridine [29], [Pt{η2-Ph2P(CH2)2PPh2}(η1-COC3F7)(Cl)] [30], [Pt{η2-Ph2P(CH2)2PPh2}(η1-COCOPh)(Cl)] [31], [Pt{η2-Ph2P(CH2)2PPh2}{η1-C7H13O2}(Cl)]CH2Cl2 [32], [Pt{η2-cy2P(CH2)2Pcy2}{η1-C3H4PPh2}(Cl)] [33], [Pt{η2-Ph2PCH2(Me)CH2(Me)PPh2}(Ph)(Cl)] [34], [Ph{η2-Ph2PCH2(Me)CH2(Me)PPh2}{η1-C2H6ClO2}(Cl)] [35], [Pt{η2-Ph2P(CH2(Me)CH2(Me)PPh2}{η1-CHClSiMe3}(Cl)]Et2O [36], [Pt{η2-cppc)(η1-neopentyl)(Cl)]Me2CO [37], [Pt{η2-(CH2)4C(CH2O)2P(CH2)2P(OCH2)2C(CH2)4}(η1-neopentyl)(Cl)]CH2Cl2 [38], [Pt{η2-Ph2P(η2-C5H8)PPh2}(η1-neopentyl)(Cl)] [39], [Pt{η2-(C5H10N)2P(η2-C5H8)P(NC5H10)2}(Me)(Cl)] [39], [Pt{η2-C5H10N)2P(η2-C5H8)P(NC5H10)2}{η1-neopentyl}(Cl)] [39], [Pt{η2-(PhO)2P(η2-C5H8)P(OPh)2}{η1-neopentyl}(Cl)] [39], [Pt{η2-(η2-C6H12)P(CH2)2P(η2-C6H12)}(Ph)(Cl)] [40], [Pt{η2-(η2-C6H12)P(CH2)2P(η2-C6H12)}(Me)(Cl)] [40], [Pt{η2-(η2-C10H20)P(η2-C6H4)P(η2-C10H20)}(Me)(Cl)]CH2Cl2 [40], [Pt{η2-(η2-C16H16)P(CH2)2P(η2-C16H16)}(Ph)(Cl)]CHCl3 [40], [Pt{η2-(η2-C6H12)P(η2-C6H4)P(η2-C6H12)}(Me)(Cl)] (Figure 2) [41], and [Pt{η2-C6H12)P(η2-C6H4)P(η2-C6H12)}(Ph)(Cl)] [42], each chelating-P,P ligand creates a five-membered metallocyclic ring with a mean P-Pt-P bite angle of 86.2° (PC2P).
In nine complexes: [Pt{η2-Ph2P(CH2)3PPh2}(C6F5)(Cl)] [29], [Pt{η2-Ph2P(CH2)3PPh2}{η1-C(H)(Cl)SiMe3})Cl)] [43,44], [Pt{η2-C12H4F13)2P(CH2)3P(C12H4F13)2}(Me)(Cl)] [45], [Pt{η2-But2P(η2-C7H6)PBut2}(Me)(Cl)] [46], [Pt{η2-But2P(η2-C7H6)PPh2}(Me)(Cl)] [46], [Pt{η2-But2P(η2-C7H6)P(o-tolyl)2}(Me)(Cl] [46], [Pt{η2-But2P(η2-C7H6)P(η2-C10H16O3)}(Me)(Cl)] [46], [Pt{η2-(η2-C10H16O3)P(η2-C7H6)P(η2-C10H16O3)}(Me)(Cl)]CH2Cl2 [46], and [Pt{η2-Ph2P(η2-C10H14N6)PPh2}(Me)(Cl)]hexane [47] each chelating-P,P ligand creates a six-membered metallocyclic ring with values of the P-Pt-P bite angles of 94° (PC3P) [29,43,44,45,46] and 91.5° (PCNCP) [47].
There are four complexes: [Pt{η2-Ph2P(η2-C4H8)PPh2}(C6F5)(Cl)]Me2CO (2 isomers) [29], [Pt{η2-diop}{η1-C(H)(Cl)CO2Et}(Cl)] [48,49] and [Pt{η2-diop}{η1-C(H)(Me)CO2Et}(Cl)] [50,51] in which each chelating-P,P ligand creates a seven-membered metallocyclic ring with mean P-Pt-P bite angle of 98.2° (PC4P).
In orthorhombic [Pt{η2-Ph2P(η2-C21H21N3)PPh2}(Me)(Cl)] [52] the chelating-P,P ligand forms a ten-membered metallocyclic ring, 99° (PCNCNCNCP).
The size of the respective metallocyclic rings influences the Pt-L bond distances. The Pt-L bond distances (mean values) elongates in the sequences:
  • four-membered: 1.98 Å (C, trans to P) < 2.227 Å (P, trans to Cl) < 2.295 Å (P, trans to C) < 2.365 Å (Cl, trans to P);
  • five-membered: 2.11 Å (C, trans to P) < 2.207 Å (P, trans to Cl) < 2.295 Å (P. trans to C) < 2.360 Å (Cl, trans to P);
  • six-membered: 2.105 Å (C, trans to P) < 2.232 Å (P, trans to Cl) < 2.318 Å (P, trans to C) < 2.360 Å (Cl, trans to P);
  • seven-membered: 2.14 Å (C, trans to P) < 2.230 Å (P, trans to Cl) < 2.326 Å (P, trans to C) < 2.362 Å (Cl, trans to P).
There is a cooperative effect between structural parameters, For example, P-Pt-P bite angles, sum of all four (Pt-P(x2) + Pt-C + Pt-Cl) bond distances, remaining cis-L-Pt-L bond angles and trans-L-Pt-L bond angles. When the P-Pt-P bite angle opens, the sum of Pt-L bond distance increases, and the remaining cis-L-Pt-L as well as trans-L-Pt-L bond angles closes: as can be seen from the respective mean values (Table 1).

2.3. Cis-Pt(η1-PL)(η2-P,CL)(η1-Cl)

There are three of these complexes: monoclinic [Pt(PPh3){η2-C24H32PSi2}(Cl)] [53], triclinic [Pt{P(p-tolyl)Ph2}{η2-C19H16P}](Cl)]benzene (Figure 3) [54] and orthorhombic [Pt(PMe3){η2-tbtpb}(Cl)] [55]. Each chelating-P,C ligand forms a metallocyclic ring: in the [53] first example a three-membered 41° (PC) ring. In the second [54] a four-membered 69.8° (PCC) ring, and in the third [55] a five-membered, 82.6° (PC2C) ring. The mean Pt-L bond distances elongate in the order: 2.225 Å (trans to Cl) < 2.25 Å (C, trans to P) < 2.27 Å (P, trans to P) < 2.41 (Cl, trans to P).

3. Conclusions

This manuscript covers over sixty complexes with cis-PtP2CCl inner coordination sphere. These complexes, from the viewpoint of the coordination mode of the ligands, are divided into the three groups:
-
Pt(η1-PL)21-CL)(η1-Cl) (17 examples);
-
Pt(η2-P2L)(η1-CL)(η1-Cl) (43 examples);
-
Pt(η1-PL)(η2-P,CL)(η1-Cl) (3 examples).
The chelating ligands cover a wide variety of metallocyclic rings and the effect of both electronic and steric factors can be seen from the values of the L-Pt-L bite angles. The L-Pt-L bite angles open in the sequence (mean values): 41° (PC) < 69.8° (PCC) < 70.6° (POP) < 73.8° (PCP) < 82.6° (PC2P) < 91.5° (PCNCP) < 94° (PC3P) < 98.2° (PC4P) < 99° (PCNCNCNCP).
The mean Pt-L bond distances elongate in the order: 2.100 Å (C trans to P) < 2.222 Å (P, trans to Cl) < 2.312 Å (P, trans to C) < 2.366 Å (Cl, trans to P).
There are two monoclinic, cis-[Pt{η2-Ph2P(η2-C4H8)PPh2}{C6F5}(Cl)]Me2CO complexes [29] which exist in two isomeric forms. These isomers differ mostly by degree of distortion and are classical examples of distortion isomerism [56,57,58].
This manuscript together with its precursors [3,4] which classified and analyzed structural data of PtP2CX (X = H, F or O) [3] and PtP2CX (X = N or Br) [4], the predominant square planar configuration about the platinum atom is cis rather than trans. The total mean values of Pt-L bond distances in the series of cis-PtP2CX (X = H, F, O, N or Cl) complexes elongate in the order:
-
Pt-P (trans to X): 2.214 Å (O) < 2.220 Å (F) < 2.222 Å (Cl) < 2.240 Å (N) < 2.300 Å (C) < 2.323 Å (H);
-
Pt-X (trans to P): 1.65 Å (H) < 2.02 Å (F) < 2.07 Å (N) < 2.075 Å (O) < 2.222 Å (Cl)
As can be seen, the Pt-L bond distances reflect the trans-influence of the respective donor atom. In these series of complexes with cis-configuration, the sum of all four (Pt-P(x2) + Pt-C + Pt-X) bond distances increase with the covalent radius of X atom in the sequence: 8.28 Å (H, 0.30 Å) < 8.54 Å (F, 0.58 Å) < 8.68 Å (O, 0.66 Å) < 8.70 Å (N, 0.70 Å) < 9.00 Å (Cl, 1.00 Å), as would be expected.
Noticeably, the sum of all four Pt-L bond distances, cis- and trans-PtP2CCl of 9.00 Å versus 8.95 Å, indicates that the complexes with cis-configuration are somewhat less crowded and more distorted than their trans-partners. In the complexes with cis-configuration the Pt-L bonds are more polar and presumably weaker than those in the complexes with trans-configuration, in which the Pt-L bonds are less polar and presumably stronger.

Acknowledgments

This work was supported by the projects VEGA 1/0873/15 and KEGA 022UK-4/2015.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

But2P(η2-C7H6)PBut2di-t-butyl(2-di-t-butylphosphino)benzyl)phosphine
C2H6ClO2chloro(methoxycarbonyl)methyl
C3H4PPh21-(diphenylphosphino)propenyl
C4H8Otetrahydrofuran
C5H2Ph22-(2,3-diphenylcycloprop-2-en-1-yl)vinyl
(C5H10N)2P(η2-C5H8)P(NC5H10)21,2-bis(bis(piperidin-1-yl)phosphorino)cyclopentane
2-C6H12)P(CH2)2P(η2-C6H12)1,1′-ethane-1,2-diylbis(2,5-dimethylphospholane)
2-C6H12)P(η2-C6H4)P(η2-C6H12)1,2-bis((hexa-2,5-diyl)phosphino)benzene
C7H13O21-(tert-butoxycarbinol)ethyl
C8H12N21-methylbenzimidazol-2-ylidene
C8H15N23-((dimethylamino)methylene)-1-methylpyrrolidin-2-ylidene
C8H3F62,5-bis(trifluoromethyl)phenyl
C8H5BN(SiMe3)21-(bis(trimethylsilyl)amino)-3-phenyl-1H-borizen-2-yl
2-C10H16O3)P(η2-C7H6)P(η2-C10H16O3)bis(1,3,5,7-tetramethyl-2,4,6-trioxa-8-phosphatricyclo[3.3.1.13,7]dec-8-yl)benzyl
2-C10H20)P(η2-C6H4)P(η2-C10H20)1,1′-(1,2-phenylene)bis(2,5-diisopropylphospholane)
C10H11ClN2SSi1-(chloro(phenyl)sulfidosilyl)-3-methylimidazolin-2-ylidene
C11H19N22,5-bis((dimethylamino)methylene)cyclopentylidene
(C12H4F13)2P(CH2)3P(C12H4F13)2propane-1,3-diyl(bis(4-tridecafluorohexyl)phenyl
2-C16H16)P(CH2)22-C16H16)1,1′-ethane-1,2-diylbis(2,5-diphenylphospholane)
η2-C19H16P2-(diphenylphosphino)-5-methylphenyl
η2-C24H32PSi21-methyl-2,6-bis(trimethylsilyl)-3,5-diphenylphosphinine
cppc1-[chloro(piperidin-1-yl)phosphino]-2-[bis(piperidin-1-yl) phosphino]cyclopentane
diopPh2PCH2CHOC(H2)COCHCH2PPh2
P(NC5H4OS)Ph22-(diphenylphosphino)-2-thienylcarboxamide
P(η2-C7H5NO)Ph3-phenyl-1,3-dihydro-2H-1,3-benzaphosphol-2-one
Ph2P(η2-C10H14N2)PPh2(3-(adenin-9-yl)propyl)bi(diphenylphosphinomethyl) amine
Ph2P(η2-C21H21N3)PPh2N,N′-dibenzyl-N,N′-bis((diphenylphosphino)methyl)pyridine-2,6-diamine
Ph2P(η2-C5H8)PPh21,2-bis(diphenylphosphino)cyclopentane
Ph2PCH2(Me)CH2(Me)PPh22,3-bis(diphenylphosphino)butane
POPN,N′,N″,N‴-tetra-tert-butyl-N,N″-bis(trimethylsilyl) tetraamidodiphosphit
tbtpb2,4,6-Tri-t-butyl-2,4-dihydro-5-hydroxy-1,3-di-oxo-1,3,5-triphosphabenzene-P,C

References

  1. Melník, M.; Mikuš, P. Organophosphines in organoplatinum complexes structural aspects of PtPC3 and PtP2CX (X = H, F or OL) derivatives. J. Organomet. Chem. 2016, 811, 1–7. [Google Scholar] [CrossRef]
  2. Melník, M.; Mikuš, P. Organophosphines in organoplatinum complexes: Structural aspects of PtP2CX (X = NL or BL) derivatives. J. Organomet. Chem. 2016, 813, 78–83. [Google Scholar] [CrossRef]
  3. Melník, M.; Mikuš, P. Organophosphines in organoplatinum complexes—Structural aspects of trans-PtP2CCl derivatives. J. Organomet. Chem. 2016, 819, 46–52. [Google Scholar] [CrossRef]
  4. Melník, M.; Mikuš, P. Organophosphines in organoplatinum complexes—Structural aspects OF PtP2CX (X = Br or I) derivatives. J. Organomet. Chem. 2016, 823, 97–102. [Google Scholar] [CrossRef]
  5. Braunschweig, H.; Ye, Q.; Radacki, K. Borylene-based functionalization of Pt–alkynyl complexes by photochemical borylene transfer from [(OC)5Cr=BN(SiMe3)2]. Chem. Commun. 2009, 6979–6981. [Google Scholar] [CrossRef] [PubMed]
  6. Jacob, V.; Weakley, T.J.R.; Haley, M.M. Rearrangement of a σ-2-(Cycloprop-2-enyl)vinyl- to an η3-Cyclopentadienylplatinum(II) Complex. Selective Protonolysis of the Platinum−Methyl Bond. Organometallics 2002, 21, 5394–5401. [Google Scholar] [CrossRef]
  7. Bardi, R.; Del Pra, A.; Piazzesi, A.M.; Minniti, D.; Romeo, R. Crystal and Molecular Structure of di(triethylphosphino)(ethyl)chloride platinum(II) complex. Cryst. Struct. Commun. 1981, 10, 333–335. [Google Scholar]
  8. Bresciani-Pahor, N.; Plazzotta, M.; Randaccio, L.; Bruno, G.; Ricevato, V.; Romeo, R.; Belluco, U. Crystal and molecular structure of cis-chloro-p-tolyl-bis(triethylphosphine)platinum(II) and of cis-chloro-perfluorophenyl-bis(triethylphosphine)platinum(II). Inorg. Chim. Acta 1978, 31, 171–175. [Google Scholar] [CrossRef]
  9. Stienborn, D.; Becke, S.; Bruhn, C.; Heinemann, F.W. Platin(II)-Komplexe mit schwefelfunktionalisierten Alkenylliganden. J. Oragnomet. Chem. 1998, 556, 189–196. [Google Scholar] [CrossRef]
  10. Russell, D.R.; Tucker, P.A. Crystal and molecular structure of cis-chloro(3-chloro-1,1,3,3-tetrafluoropropan-2-one)bis(triphenylphosphine)platinum(II). J. Chem. Soc. Dalton Trans. 1975, 2222–2225. [Google Scholar] [CrossRef]
  11. Engelter, C.; Moss, J.R.; Niven, M.L.; Nassimbeni, L.R.; Reid, G. A cationic ylide complex of platinum(ii): Its structure and formation from a chloromethyl-platinum complex. J. Organomet. Chem. 1982, 232, C78–C80. [Google Scholar] [CrossRef]
  12. Engelter, C.; Moss, J.R.; Nassimbeni, L.R.; Niven, M.L.; Reidaud, G.; Spiers, J.C. Haloalkyl complexes of the transition metals: IV. The formation of a cationic ylide complex of platinum(II) from a chloromethylplatinum(II) complex and the crystal structures of cis-[Pt(CH2PPh3)X(PPh3)2]I (X = Cl or I). J. Organomet. Chem. 1986, 315, 255–268. [Google Scholar] [CrossRef]
  13. Henderson, W.; Fawcett, J.; Kemmitt, R.D.W.; McKenna, P.; Russell, D.R. Decomposition pathways of platinum(II) complexes containing alkyl and halide ligands investigated by electrospray mass spectrometry. The X-ray crystal structure of cis-[PtCl{CH2C(O)CH2Cl}(PPh3)2]. Polyhedron 1997, 16, 2455–2463. [Google Scholar] [CrossRef]
  14. Baukova, T.V.; Oleinikova, N.A.; Kuzmina, L.G. Synthesis, structure, and properties of organoplatinum(ii) derivatives of diphenyl ether. Izv. Akad. Nauk SSSR Ser. Khimia 1994, 43, 1719–1725. [Google Scholar] [CrossRef]
  15. Alcarazo, M.; Radkowski, K.; Goddard, R.; Furstner, A. Metal complexes with carbene ligands stabilized by lateral enamines. Chem. Commun. 2011, 47, 776–778. [Google Scholar] [CrossRef] [PubMed]
  16. Brendler, E.; Hill, A.F.; Wagler, J. A Donor-Stabilized Silanethione or a Si-Substituted N-Heterocyclic Platinum. Chem. Eur. J. 2008, 14, 11300–11304. [Google Scholar] [CrossRef] [PubMed]
  17. Kosterke, T.; Pape, T.; Hahn, F.E. Synthesis of NHC Complexes by Oxidative Addition of 2-Chloro-N-methylbenzimidazole. J. Am. Chem. Soc. 2011, 133, 2112–2115. [Google Scholar] [CrossRef] [PubMed]
  18. Pelczar, E.M.; Nytko, E.A.; Zhuravel, M.A.; Smith, J.M.; Glueck, D.C.; Sommer, R.; Incarvito, C.D.; Rheingold, A.L. Synthesis and structure of platinum and palladium complexes of dimesitylphosphine. Polyhedron 2002, 21, 2409–2419. [Google Scholar] [CrossRef]
  19. Johnson, D.K.; Rukaschaisirikul, T.; Sun, Y.; Taylor, N.J.; Canty, A.J.; Carty, A.J. Spectroscopic Properties of Inorganic and Organometallic Compounds. Inorg. Chem. 1993, 32, 5544–5549. [Google Scholar] [CrossRef]
  20. Milton, H.L.; Wheatley, M.V.; Slawin, A.M.Z.; Woollins, J.D. Synthesis and coordination of 2-diphenylphosphinothiophenocarboxamide and bis (2,5-diphenylphosphinepicolinamide). Polyhedron 2004, 23, 2575–2585. [Google Scholar] [CrossRef]
  21. Bennett, J.; Doyle, R.J.; Lee, H.Y.; Lu, D.; Salem, G.; Speldewinde, D.J.; Tifan, M.; Willis, A.C. Synthesis of 1,3-azaphosphol-2-ones. Crystal and molecular structures of [SP-4-2]-dichlorobis (3-phenyl-1,3-dihydrobenzo[1,3]azaphosphol-2-one-P)palladium(II) and its chloro(methyl)platinum(II) analogue. Dalton Trans. 2010, 39, 256–264. [Google Scholar] [CrossRef] [PubMed]
  22. Scherer, O.J.; Konrad, R.; Guggolz, E.; Ziegler, M.L. Elementorganische Amin/Imin-Verbindungen, XXIV. Tris{(tert-butylimino)[tert-butyl(trimethylsilyl)amino]-phosphan}platin(0)– ein wertvoller Synthesebaustein. Chem. Ber. 1983, 116, 2676–2690. [Google Scholar] [CrossRef]
  23. Deacon, G.B.; Nelson, K.T.; Tiekink, E.R.T. [Bis(di­phenylphosphino)methane-P,P’](chloro)(pentafluoro­phenyl)platinum(II): PtCl(dppm)C6F5. Acta Crystallogr. Sect. C 1991, 47, 955–957. [Google Scholar] [CrossRef]
  24. Iverson, C.N.; Lachicotte, R.J.; Muller, C.; Jones, W.D. η2-Coordination and C−H Activation of Electron-Poor Arenes. Organometallics 2002, 21, 5320–5333. [Google Scholar] [CrossRef]
  25. Del Pra, A.; Zanotti, G.; Prazzesi, A.; Belluco, U.; Ros, R. The crystal and molecular structure of PtCl(CF3)(cis-Ph2PCH=CHPPh2). Trans. Met. Chem. 1979, 4, 381–384. [Google Scholar] [CrossRef]
  26. Calligarlies, M.; Carturan, G.; Nardin, G.; Scrivanti, A.; Wojcicki, A. Metal complexes with carbene ligands stabilized by lateral enamines. Organometallics 1983, 2, 865–874. [Google Scholar]
  27. Hughes, R.P.; Ward, A.J.; Golen, J.A.; Incarvito, C.O.; Rheingold, A.L.; Zakharov, L.N. Synthesis, molecular structures, and chemistry of some new palladium(II) and platinum(II) complexes with pentafluorophenyl ligands. Dalton Trans. 2004, 2720–2727. [Google Scholar] [CrossRef] [PubMed]
  28. Schwatz, B.D.; Brennessel, W.W.; Jones, W.D. C−CN vs. C−H Cleavage of Benzonitrile Using [(dippe)PtH]2. Organometallics 2011, 30, 1523–1529. [Google Scholar]
  29. Deacon, G.B.; Elliott, P.W.; Erven, A.P.; Meyer, G. The Synthesis by Decarboxylation Reactions and Crystal Structures of 1, n–Bis(diphenylphosphino)alkane(pentafluorophenyl)-platinum(II) Complexes. Z. Anorg. Allg. Chem. 2005, 631, 843–850. [Google Scholar] [CrossRef]
  30. Wicht, D.K.; Glueck, D.S.; Liable-Sands, L.M.; Rheingold, A.L. Terminal Platinum(II) Perfluoroacyl Phosphido Complexes:  Synthesis and Dynamic Processes. Organometallics 1999, 18, 5130–5140. [Google Scholar] [CrossRef]
  31. You, Y.J.; Chen, J.T.; Cheng, M.C.; Wang, Y. Solvent-controlled equilibria of substitution and isomerization of.alpha.-ketoacyl complexes of platinum(II). X-ray single-crystal structure of cis-Pt(COCOPh)(Cl)(PPh2CH2CH2PPh2). Inorg. Chem. 1991, 30, 3621–3625. [Google Scholar] [CrossRef]
  32. Scriban, C.; Glueck, D.S.; Zakharov, L.N.; Kassel, W.S.; DiPasquale, A.G.; Golen, J.A.; Rheingold, A.L. P−C and C−C Bond Formation by Michael Addition in Platinum-Catalyzed Hydrophosphination and in the Stoichiometric Reactions of Platinum Phosphido Complexes with Activated Alkenes. Organometallics 2006, 25, 5757–5767. [Google Scholar] [CrossRef]
  33. Bennett, M.A.; Kwan, L.; Rae, A.D.; Wenger, E.; Willis, A.C. Preparation and reactivity of mononuclear platinum(0) complexes containing a η2-coordinated alkynylphosphine. J. Chem. Soc. Dalton Trans. 2002, 226–233. [Google Scholar] [CrossRef]
  34. Johansson, M.H.; Malmstrom, T.; Wendt, O.F. Chiral platinum(II) complexes. Crystal and molecular structures of cis-[PtPhCl((R,R)-CHIRAPHOS)] and cis-[PtCl2((R,R)-CHIRAPHOS)]. Inorg. Chim. Acta. 2001, 316, 149–152. [Google Scholar] [CrossRef]
  35. Ferguson, G.; Gallagher, J.F.; McAlees, A.J.; McCrindle, P. Mechanism and Stereochemistry of the Reaction of Dichloroplatinum(II) Complexes with Diazo Compounds. X-ray Structures of Four Key Products:  [(2R,3R)-Bis(diphenylphosphino)butane]chloro-[(S)-chloro(methoxycarbonyl)methyl]platinum(II), (η4-1,5-Cyclooctadiene)[3-chloro-5-(dimethoxyphosphonyl)-2-methoxy-4,1,2-platinaoxaphospholane P-oxide],(R,R)-[Chloro(dimethoxyphosphonyl)methyl][chloro-(trimethylsilyl)methyl] (1,5-cyclooctadiene) platinum(II), and Chloro[chloro(dimethoxyphosphonyl)methyl](η4-1,5-cyclooctadiene)platinum(II). Organometallics 1997, 16, 1053–1062. [Google Scholar]
  36. Argazzi, R.; Bergamini, P.; Costa, E.; Gee, V.; Hogg, J.K.; Martin, A.; Orpen, A.G.; Pringle, P.G. Anchimeric Assistance by Platinum(II) in the Epimerizations of [PtX(CHXSiMe3)(R,R-chiraphos)]. Organometallics 1996, 15, 5591–5597. [Google Scholar] [CrossRef]
  37. Dahlenburg, L.; Mertel, S. Chiral bisphosphanes. V. Chloro{rac,trans-1-[chloro(piperidin-1-yl) phosphino]-2-[bis(piperidin-1-yl)phosphino]cyclo­pentane-P,P’}neopentylplatinum(II) acetone solvate. Acta. Crystallogr. Sect. C 1999, 55, 347–349. [Google Scholar] [CrossRef]
  38. Squires, M.E.; Sardella, D.J.; Kool, L.B. C-H Activation by [Bis(dialkoxyphosphino)ethane]platinum(0) and [Bis(diaminophosphino)ethane]platinum(0) Complexes: Platinum-Platinum Dimer Formation Limits Yields. Organometallics 1994, 13, 2970–2978. [Google Scholar] [CrossRef]
  39. Dahlenburg, L.; Mertel, S. Chiral chelate phosphanes: XI. Application of cyclopentane-based C2 chiral bis(phosphane) ligands C5H8(PR2)2 to Pt Sn-catalyzed styrene hydroformylation. J. Organomet. Chem. 2001, 630, 221–243. [Google Scholar] [CrossRef]
  40. Quino-o, M.A.; Zureick, A.H.; Blank, N.F.; Anderson, B.J.; Chapp, T.W.; Kim, Y.; Glueck, D.S.; Rheingold, A.L. Synthesis and Structure of Platinum Bis(phospholane) Complexes Pt(diphos*)(R)(X), Catalyst Precursors for Asymmetric Phosphine Alkylation. Organometallics 2012, 31, 6900–6910. [Google Scholar] [CrossRef]
  41. Scriban, C.; Wicht, D.K.; Glueck, D.S.; Zakharov, L.N.; Golen, J.A.; Rheingold, A.L. Platinum(II) Phosphido Complexes as Metalloligands. Structural and Spectroscopic Consequences of Conversion from Terminal to Bridging Coordination. Organometallics 2006, 25, 3370–3378. [Google Scholar] [CrossRef]
  42. Brunker, T.J.; Blank, N.F.; Moncarz, J.R.; Scriban, C.; Anderson, B.J.; Glueck, D.S.; Zakharov, L.N.; Golen, J.A.; Sommer, R.D.; Incarvito, C.D. Chiral Palladium(0) trans-Stilbene Complexes:  Synthesis, Structure, and Oxidative Addition of Phenyl Iodide. Organometallics 2005, 24, 2730–2746. [Google Scholar] [CrossRef]
  43. Bergamini, P.; Costa, E.; Sostero, S.; Ganter, C.; Hogg, J.; Orpen, A.G.; Pringle, P.G. The reactions of Me3SiCHN2 with [PtX2(S,S-skewphos)]: Highly diastereoselective carbene insertions into Pt Cl bonds, and Me3SiCHN2 as a CH2N2 equivalent. J. Organomet. Chem. 1993, 455, C13–C16. [Google Scholar] [CrossRef]
  44. Bergamini, P.; Costa, E.; Orpen, A.G.; Ganter, C.; Pringle, P.G. Highly stereospecific carbene insertions into platinum–halide bonds. Crystal structure of [PtCl(S-CHClSiMe3)(S,S-Ph2PCHMeCH2CHMePPh2)]. J. Chem. Soc. Dalton Trans. 1994, 651–655. [Google Scholar] [CrossRef]
  45. Berven, B.M.; Kousantonis, G.A.; Skelton, B.W.; Trengove, R.D.; White, A.H. Highly fluorous complexes of nickel, palladium and platinum: Solubility and catalysis in high pressure CO2. Dalton Trans. 2011, 4167–4174. [Google Scholar] [CrossRef] [PubMed]
  46. Fanjul, T.; Eastham, G.; Floure, J.; Forrest, S.J.K.; Haddow, M.F.; Hamilton, A.; Pringle, P.G.; Golen, A.G.; Waugh, M. Interplay of bite angle and cone angle effects. A comparison between o-C6H4(CH2PR2)(PR′2) and o-C6H4(CH2PR2)(CH2PR′2) as ligands for Pd-catalysed ethene hydromethoxycarbonylation Dalton Trans. Dalton Trans. 2013, 42, 100–115. [Google Scholar] [CrossRef] [PubMed]
  47. Zhang, Q.; Hua, G.; Bhattacharyya, P.; Slawin, A.M.Z.; Woollins, J.D. Syntheses and Coordination Chemistry of Aminomethylphosphine Derivatives of Adenine. Eur. J. Inorg. Chem. 2003, 2426–2437. [Google Scholar] [CrossRef]
  48. Bergamini, P.; Costa, E.; Sostero, S.; Orpen, A.G.; Pringle, P.G. Convenient synthesis of. alpha.-chiral platinum alkyls. Organometallics 1991, 10, 2989–2990. [Google Scholar] [CrossRef]
  49. Bergamini, P.; Costa, E.; Sostero, S.; Orpen, A.G.; Pringle, P.G. Diastereoselective carbene insertions into platinum-halogen bonds. Crystal structure of [PtCl(R-CHClCO2Et)(R,R-diop)]. Organometallics 1992, 11, 3879–3885. [Google Scholar] [CrossRef]
  50. Bergamini, P.; Costa, E.; Cramer, D.; Hogg, J.; Orpen, A.G.; Pringle, P.G. Diastereoselective C-C Bond Formation by Carbene Insertions into Pt-CH3 Bonds. Organometallics 1994, 13, 1058–1060. [Google Scholar] [CrossRef]
  51. Bergamini, P.; Costa, E.; Orpen, A.G.; Pringle, P.G.; Smith, M.B. Reactions of Diazo Carbonyls with [PtX(CH3)(chiral diphosphine)] (X = Cl, Br, I): Chemoselectivity and Diastereoselectivity of Pt-C and Pt-X Carbene Insertion. Organometallics 1995, 14, 3178–3186. [Google Scholar] [CrossRef]
  52. Wang, Z.J.; Wang, X.X.; Wan, C.Q. Chlorido{N2,N6-dibenzyl-N2,N6-bis[(diphenylphosphanyl)meth­yl]pyridine-2,6-diamine}methylplatinum(II). Acta Crystallogr. Sect. E Struct. Rep. Online 2010, 66, m1341–m1342. [Google Scholar] [CrossRef] [PubMed]
  53. Moores, A.; Mezailles, N.; Ricard, L.; Jean, Y.; LeFloch, P. η2-Palladium and Platinum(II) Complexes of a λ4-Phosphinine Anion:  Syntheses, X-ray Crystal Structures, and DFT Calculations. Organometallics 2004, 23, 2870–2875. [Google Scholar] [CrossRef]
  54. Bennett, M.A.; Bhargava, S.K.; Priver, S.H.; Willis, A.C. Selective Cleavage by Acids of One Metal–Carbon σ-Bond of a Bis(ortho-platinated) Triarylphosphane: A 31P NMR trans-Influence Series Based on the Unit Pt(κ2-C6H3-5-Me-2-PPh2)(PPh2-4-tol). Eur. J. Inorg. Chem. 2008, 3467–3483. [Google Scholar] [CrossRef]
  55. Clendenning, S.B.; Hitchcock, P.B.; Nixon, J.F. First η1-ligated 2,4,6-tri-tert-butyl-1,3,5-triphosphabenzene complexes and the remarkable trihydration reaction of trans-[PtCl2(PMe3)(P3C3But3)] to cis-[PtCl(PMe3)(P3O3C3H5But3)], containing the novel CH(But)PH(O)C(But)PH(O)CH(But)P(O) ring system. Chem. Commun. 1999, 1377–1381. [Google Scholar] [CrossRef]
  56. Melník, M. Structural isomerism of copper(II) compounds. Coord. Chem. Rev. 1982, 47, 239–261. [Google Scholar] [CrossRef]
  57. Melník, M.; Holloway, C.E. Stereochemistry of platinum coordination compounds. Coord. Chem. Rev. 2006, 250, 2261–2270. [Google Scholar] [CrossRef]
  58. Melnik, M.; Mikus, P. Stereoisomers of organoplatinum complexes. J. Organomet. Chem. 2015, 239, 779–780. [Google Scholar] [CrossRef]
Figure 1. Structure of [Pt(PPh3)21-C8H12N2}(Cl)]+ [17].
Figure 1. Structure of [Pt(PPh3)21-C8H12N2}(Cl)]+ [17].
Symmetry 10 00056 g001
Figure 2. Structure of [Pt{η2-(η2-C6H12)P(η2-C6H4)P(η2-C6H12)}(Me)(Cl)] [40].
Figure 2. Structure of [Pt{η2-(η2-C6H12)P(η2-C6H4)P(η2-C6H12)}(Me)(Cl)] [40].
Symmetry 10 00056 g002
Figure 3. Structure of [Pt{P(p-tolyl)Ph2}{η2-C19H16P](Cl)] [54].
Figure 3. Structure of [Pt{P(p-tolyl)Ph2}{η2-C19H16P](Cl)] [54].
Symmetry 10 00056 g003
Table 1. Selected structural parameters of Cis-Pt(η2-P2L)(η1-CL)(η1-Cl).
Table 1. Selected structural parameters of Cis-Pt(η2-P2L)(η1-CL)(η1-Cl).
Ring (Size)Pt-L(x4) (Å)P-Pt-P (°)Cis-L-Pt-L (°)Trans-L-Pt-L (°)
four8.8772.295.8178
five8.9886.191.3175.8
six9.0194.088.4173.5
seven9.0398.287.3171.8

Share and Cite

MDPI and ACS Style

Melnik, M.; Mikus, P.; Holloway, C.E. Organophosphines in Cis-PtP2CCl Derivatives Structural Aspects. Symmetry 2018, 10, 56. https://doi.org/10.3390/sym10030056

AMA Style

Melnik M, Mikus P, Holloway CE. Organophosphines in Cis-PtP2CCl Derivatives Structural Aspects. Symmetry. 2018; 10(3):56. https://doi.org/10.3390/sym10030056

Chicago/Turabian Style

Melnik, Milan, Peter Mikus, and Clive Edward Holloway. 2018. "Organophosphines in Cis-PtP2CCl Derivatives Structural Aspects" Symmetry 10, no. 3: 56. https://doi.org/10.3390/sym10030056

APA Style

Melnik, M., Mikus, P., & Holloway, C. E. (2018). Organophosphines in Cis-PtP2CCl Derivatives Structural Aspects. Symmetry, 10(3), 56. https://doi.org/10.3390/sym10030056

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop