Zigzag Solitons and Spontaneous Symmetry Breaking in Discrete Rabi Lattices with Long-Range Hopping
Abstract
:1. Introduction
2. Model and Methods
3. Discrete Zigzag Solitons and Their Mobility
4. SSB of Zigzag Solitons
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Susskind, L. Dynamics of spontaneous symmetry breaking in the weinberg-salam theory. Phys. Rev. D 1979, 20, 2619–2625. [Google Scholar] [CrossRef]
- Weinberg, E.J. Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 1973, 7, 1888–1910. [Google Scholar]
- Cornwall, J.M.; Norton, R.E. Spontaneous symmetry breaking without scalar mesons. Phys. Rev. D 1974, 8, 3338–3346. [Google Scholar] [CrossRef]
- Cremmer, E.; Julia, B.; Scherk, J.; Ferrara, S.; Girardello, L.; Nieuwenhuizen, P.V. Spontaneous symmetry breaking and higgs effect in supergravity without cosmological constant. Nucl. Phys. 1979, 147, 105–131. [Google Scholar] [CrossRef]
- O’Raifeartaigh, L. Spontaneous symmetry breaking for chirals scalar superfields. Nucl. Phys. 1975, 96, 331–352. [Google Scholar] [CrossRef]
- Paré, C.; Florjanczyk, M. Approximate model of soliton dynamics in all-optical couplers. Phys. Rev. A 1990, 41, 6287–6295. [Google Scholar] [CrossRef] [PubMed]
- Snyder, A.W.; Mitchell, D.J.; Poladian, L.; Rowland, D.R.; Chen, Y. Physics of nonlinear fiber couplers. J. Opt. Soc. Am. B 1991, 8, 2102–2118. [Google Scholar] [CrossRef]
- Chu, P.L.; Malomed, B.A.; Peng, G.D. Soliton switching and propagation in nonlinear fiber couplers: Analytical results. J. Opt. Soc. Am. B 1993, 10, 1379–1385. [Google Scholar] [CrossRef]
- Akhmediev, N.; Ankiewicz, A. Novel soliton states and bifurcation phenomena in nonlinear fiber couplers. Phys. Rev. Lett. 1993, 70, 2395–2398. [Google Scholar] [CrossRef] [PubMed]
- Malomed, B.A.; Skinner, I.M.; Chu, P.L.; Peng, G.D. Symmetric and asymmetric solitons in twin-core nonlinear optical fibers. Phys. Rev. E 1996, 53, 4084–4091. [Google Scholar] [CrossRef]
- Kevrekidis, P.G.; Chen, Z.; Malomed, B.A.; Frantzeskakis, D.J.; Weinstein, M.I. Spontaneous symmetry breaking in photonic lattices: Theory and experiment. Phys. Lett. A 2005, 340, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Ng, H.T.; Leung, P.T. Two-mode entanglement in two-component Bose-Einstein condensates. Phys. Rev. A 2005, 71, 351–367. [Google Scholar] [CrossRef]
- Matuszewski, M.; Malomed, B.A.; Trippenbach, M. Spontaneous symmetry breaking of solitons trapped in a double-channel potential. Phys. Rev. A 2007, 75, 063621. [Google Scholar] [CrossRef]
- Dounas-Frazer, D.R.; Hermundstad, A.M.; Carr, L.D. Ultracold bosons in a tilted multilevel double-well potential. Phys. Rev. Lett. 2007, 99, 200402. [Google Scholar] [CrossRef] [PubMed]
- Trippenbach, M.; Infeld, E.; Gocaek, J.; Matuszewski, M.; Oberthaler, M.; Malomed, B.A. Spontaneous symmetry breaking of gap solitons and phase transitions in double-well traps. Phys. Rev. A 2008, 78, 013603. [Google Scholar] [CrossRef]
- Satija, I.I.; Balakrishnan, R.; Naudus, P.; Heward, J.; Edwards, M.; Clark, C.W. Symmetry-breaking and symmetry-restoring dynamics of a mixture of Bose-Einstein condensates in a double well. Phys. Rev. A 2009, 79, 033616. [Google Scholar] [CrossRef] [Green Version]
- Qi, R.; Yu, X.-L.; Li, Z.B.; Liu, W.M. Non-Abelian Josephson effect between two F = 2 spinor Bose-Einstein condensates in double optical traps. Phys. Rev. Lett. 2009, 102, 185301. [Google Scholar] [CrossRef] [PubMed]
- Salasnich, L.; Malomed, B.A.; Toigo, F. Competition between symmetry breaking and onset of collapse in weakly coupled atomic condensates. Phys. Rev. A 2010, 81, 045603. [Google Scholar] [CrossRef]
- Mazzarella, G.; Malomed, B.A.; Salasnich, L.; Salerno, M.; Toigo, F. Rabi-Josephson oscillations and self-trapped dynamics in atomic junctions with two bosonic species. J. Phys. B 2011, 44, 035301. [Google Scholar] [CrossRef]
- Wang, C.; Kevrekidis, P.G.; Whitaker, N.; Malomed, B.A. Two-component nonlinear Schrödinger models with a double-well potential. Phys. D 2008, 237, 2922–2932. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Pang, W.; Fu, S.; Malomed, B.A. Nonlinear modes and symmetry breaking in rotating double-well potentials. Phys. Rev. A 2012, 85, 053821. [Google Scholar] [CrossRef]
- Chen, G.; Luo, Z.; Wu, J.; Wu, M. Switch between the types of the symmetry breaking bifurcation in optically induced photorefractive rotational double-well potential. J. Phys. Soc. Jpn. 2013, 82, 034401. [Google Scholar] [CrossRef]
- Albuch, L.; Malomed, B.A. Transitions between symmetric and asymmetric solitons in dual-core systems with cubic-quintic nonlinearity. Math. Comput. Simul. 2007, 74, 312–322. [Google Scholar] [CrossRef]
- Mak, W.C.K.; Malomed, B.A.; Chu, P.L. Solitons in coupled waveguides with quadratic nonlinearity. Phys. Rev. E 1997, 55, 6134. [Google Scholar] [CrossRef]
- Mak, W.C.K.; Malomed, B.A.; Chu, P.L. Asymmetric solitons in coupled second-harmonic-generating waveguides. Phys. Rev. E 1998, 57, 1092. [Google Scholar] [CrossRef]
- Driben, R.; Malomed, B.A.; Chu, P.L. All-optical switching in a two-channel waveguide with cubic-quintic nonlinearity. J. Phys. B 2006, 39, 2455. [Google Scholar] [CrossRef]
- Gubeskys, A.; Malomed, B.A. Symmetric and asymmetric solitons in linearly coupled Bose-Einstein condensates trapped in optical lattices. Phys. Rev. A 2007, 75, 063602. [Google Scholar] [CrossRef] [Green Version]
- Gubeskys, A.; Malomed, B.A. Spontaneous soliton symmetry breaking in two-dimensional coupled Bose-Einstein condensates supported by optical lattices. Phys. Rev. A 2007, 76, 043623. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, J.; Pang, W.; Malomed, B.A. Symmetry breaking in dipolar matter-wave solitons in dual-core couplers. Phys. Rev. A 2013, 87, 013604. [Google Scholar] [CrossRef] [Green Version]
- Smerzi, A.; Fantoni, S.; Giovanazzi, S.; Shenoy, R. Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates. Phys. Rev. Lett. 1997, 79, 4950–4953. [Google Scholar] [CrossRef]
- Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S.R. Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping. Phys. Rev. A 1999, 59, 69–82. [Google Scholar] [CrossRef]
- Mazzarella, G.; Moratti, M.; Salasnich, L.; Salerno, M.; Toigo, F. Atomic Josephson junction with two bosonic species. J. Phys. B 2009, 42, 125301. [Google Scholar] [CrossRef] [Green Version]
- Brazhnyi, V.A.; Malomed, B.A. Spontaneous symmetry breaking in Schrödinger lattices with two nonlinear sites. Phys. Rev. A 2011, 83, 053844. [Google Scholar] [CrossRef] [Green Version]
- Pang, W.; Guo, H.; Chen, G.; Mai, Z. Symmetry breaking bifurcation of two-component soliton modes in an inverted nonlinear random lattice. J. Phys. Soc. Jpn. 2014, 83, 034402. [Google Scholar] [CrossRef]
- Luo, Z.; Li, Y.; Pang, W.; Liu, Y.; Wang, X. Dipolar matter-wave soliton in one-dimensional optical lattice with tunable local and nonlocal nonlinearities. J. Phys. Soc. Jpn. 2013, 82, 124401. [Google Scholar] [CrossRef]
- Guo, H.; Chen, Z.; Liu, J.; Li, Y. Fundamental modes in a waveguide pipe twisted by inverted nonlinear double-well potential. Laser Phys. 2014, 24, 045403. [Google Scholar] [CrossRef]
- Fan, Z.; Shi, Y.; Liu, Y.; Pang, W.; Li, Y.; Malomed, B.A. Cross-symmetric dipolar-matter-wave solitons in double-well chains. Phys. Rev. E 2017, 95, 032226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Guan, Y.; Li, H.; Luo, Z.; Mai, Z. Nonlinear defect localized modes and composite gray and anti-gray solitons in one-dimensional waveguide arrays with dual-flip defects. Opt. Commum. 2017, 397, 105–111. [Google Scholar] [CrossRef]
- Brazhnyi, V.A.; Malomed, B.A. Localized modes in two-dimensional schrödinger lattices with a pair of nonlinear sites. Opt. Commum. 2014, 324, 277–285. [Google Scholar] [CrossRef]
- Herring, G.; Kevrekidis, P.G.; Malomed, B.A.; Carreterogonzalez, R.; Frantzeskakis, D.J. Symmetry breaking in linearly coupled dynamical lattices. Phys. Rev. E 2007, 76, 066606. [Google Scholar] [CrossRef] [PubMed]
- Mai, Z.; Fu, S.; Wu, J.; Li, Y. Discrete solitons in waveguide arrays with long-range linearly coupled effect. J. Phys. Soc. Jpn. 2014, 83, 034404. [Google Scholar] [CrossRef]
- Snyder, A.W.; Mitchell, D.J.; Poladian, L.; Rowland, D.R.; Chen, Y. Linear approach for approximating spatial solitons and nonlinear guided modes. J. Opt. Soc. Am. B 1991, 8, 1618–1620. [Google Scholar] [CrossRef]
- Romangoli, M.; Trillo, S.; Wabnitz, S. Soliton switching in nonlinear couplers. Opt. Quantum. Electron. 1992, 24, S1237–S1267. [Google Scholar]
- Huang, W.-P. Coupled-mode theory for optical waveguides: An overview. J. Opt. Soc. Am. A 1994, 11, 963–983. [Google Scholar] [CrossRef]
- Mak, W.C.K.; Malomed, B.A.; Chu, P.L. Solitary waves in coupled nonlinear waveguides with Bragg gratings. J. Opt. Soc. Am. B 1998, 15, 1685–1692. [Google Scholar] [CrossRef]
- Chen, Z.; Malomed, B.A. Gap solitons in Rabi lattices. Phys. Rev. E 2017, 95, 032217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, R. Harmonic oscillation in a spatially finite array waveguide. Opt. Lett. 2004, 29, 2752–2754. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Pagano, G.; Cappellini, G.; Livi, L.; Rider, M.; Catani, J.; Sias, C.; Zoller, P.; Inguscio, M.; Dalmonte, M.; Fallani, L. Observation of chiral edge states with neutral fermions in synthetic hall ribbons. Science 2015, 349, 1510–1513. [Google Scholar] [CrossRef] [PubMed]
- Stuhl, B.K.; Lu, H.I.; Aycock, L.M.; Genkina, D.; Spielman, I.B. Visualizing edge states with an atomic bose gas in the quantum hall regime. Science 2015, 349, 1514–1518. [Google Scholar] [CrossRef] [PubMed]
- Celi, A.; Tarruell, L. Physics probing the edge with cold atoms. Science 2015, 349, 1450–1451. [Google Scholar] [CrossRef] [PubMed]
- Cheon, S.; Kim, T.H.; Lee, S.H.; Yeom, H.W. Chiral solitons in a coupled double peierls chain. Science 2015, 350, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Golshani, M.; Weimann, S.; Jafari, K.; Nezhad, M.K.; Langari, A.; Bahrampour, A.; Eichelkraut, T.; Mahdavi, S.M.; Szameit, A. Impact of loss on the wave dynamics in photonic waveguide lattices. Phys. Rev. Lett. 2014, 113, 123903. [Google Scholar] [CrossRef] [PubMed]
- Chiofalo, M.L.; Succi, S.; Tosi, M.P. Ground state of trapped interacting bose-einstein condensates by an explicit imaginary-time algorithm. Phys. Rev. E 2000, 62, 7438. [Google Scholar] [CrossRef]
- Mai, Z.; Pang, W.; Wu, J.; Li, Y. Symmetry breaking of discrete solitons in two-component waveguide arrays with long-range linearly coupled effect. J. Phys. Soc. Jpn. 2015, 84, 014401. [Google Scholar] [CrossRef]
- Vakhitov, N.G.; Kolokolov, A.A. Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys. Quantum Electron. 1973, 16, 783–789. [Google Scholar] [CrossRef]
- Sakaguchi, H.; Malomed, B.A. Solitons in combined linear and nonlinear lattice potentials. Phys. Rev. A 2010, 81, 013624. [Google Scholar] [CrossRef] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Pan, Z.; Luo, Z.; Liu, Y.; Tan, S.; Mai, Z.; Xu, J. Zigzag Solitons and Spontaneous Symmetry Breaking in Discrete Rabi Lattices with Long-Range Hopping. Symmetry 2018, 10, 277. https://doi.org/10.3390/sym10070277
Xu H, Pan Z, Luo Z, Liu Y, Tan S, Mai Z, Xu J. Zigzag Solitons and Spontaneous Symmetry Breaking in Discrete Rabi Lattices with Long-Range Hopping. Symmetry. 2018; 10(7):277. https://doi.org/10.3390/sym10070277
Chicago/Turabian StyleXu, Haitao, Zhelang Pan, Zhihuan Luo, Yan Liu, Suiyan Tan, Zhijie Mai, and Jun Xu. 2018. "Zigzag Solitons and Spontaneous Symmetry Breaking in Discrete Rabi Lattices with Long-Range Hopping" Symmetry 10, no. 7: 277. https://doi.org/10.3390/sym10070277
APA StyleXu, H., Pan, Z., Luo, Z., Liu, Y., Tan, S., Mai, Z., & Xu, J. (2018). Zigzag Solitons and Spontaneous Symmetry Breaking in Discrete Rabi Lattices with Long-Range Hopping. Symmetry, 10(7), 277. https://doi.org/10.3390/sym10070277