On a Generalization of the Initial-Boundary Problem for the Vibrating String Equation
Abstract
:1. Introduction
2. The Uniqueness of Solution
3. The Existence of Solution
- (1)
- , ,and uniformly with respect to t,
- (2)
- , ;
- (3)
- ,
- (4)
- , .
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bavrin, I.I. Operators for harmonic functions and applications. Differ. Equat. 1985, 21, 9–15. [Google Scholar]
- Karachik, V.V.; Turmetov, B.K. A Problem for the Harmonic Equation. Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 1990, 1, 17–21. [Google Scholar]
- Karachik, V.V. On the solvability of the boundary value problem for the Helmholtz equation with normal derivatives of high order on the boundary. Differ. Equat. 1992, 28, 907–909. [Google Scholar]
- Karachik, V.V. On a problem for the Poisson equation with normal derivatives of high order on the boundary. Differ. Equat. 1996, 32, 1501–1503. [Google Scholar]
- Karachik, V.V. The generalized Neumann problem for harmonic functions in a half-space. Differ. Equat. 1999, 35, 1–6. [Google Scholar]
- Sokolovskiy, V.B. On a generalization of the Neumann problem. Differ. Equat. 1999, 34, 714–716. [Google Scholar]
- Karachik, V.V. Solution of the Dirichlet Problem with Polynomial Data for the Polyharmonic Equation in a Ball. Differ. Equat. 2015, 51, 1033–1042. [Google Scholar] [CrossRef]
- Turmetov, B. Solvability of fractional analogues of the Neumann problem for a nonhomogeneous biharmonic equation. Electron. J. Differ. Equat. 2015, 2015, 1–21. [Google Scholar]
- Amanov, D. On a generalization of the Dirichlet problem for the Poisson equation. Bound. Value Probl. 2016, 2016, 160. [Google Scholar] [CrossRef]
- Turmetov, B.; Koshanova, M.; Usmanov, K. Solvability of boundary value problems for Poisson equation with Hadamard type boundary operator. Electron. J. Differ. Equat. 2016, 2016, 1–12. [Google Scholar]
- Karachik, V.; Turmetov, B. Solvability of some Neumann-Type boundary value problem for biharmonic equations. Electron. J. Differ. Equat. 2017, 2017, 1–17. [Google Scholar]
- Karachik, V.V. A Neumann-Type Problem for the Biharmonic Equation. Sib. Adv. Math. 2017, 27, 103–118. [Google Scholar] [CrossRef]
- Karachik, V.V. Solving a problem of Robin-Type for Biharmonic Equation. Russ. Math. 2018, 62, 34–48. [Google Scholar] [CrossRef]
- Bitsadze, A.V. On the Neumann Problem for Harmonic Functions (Russian). Dokl. Akad. Nauk SSSR. 1990, 311, 11–13, translation in Soviet Math. Dokl. 1990, 41, 193–195. [Google Scholar]
- Amanov, D. On a generalization of the first initial-boundary value problem for the heat conduction equation. Contemp. Anal. Appl. Math. 2014, 2, 88–97. [Google Scholar] [CrossRef]
- Petrovskiy, I.G. Lectures on Partial Differential Equations; GITTL: Moscow-Leningrad, Russia, 1961. [Google Scholar]
- Tikhonov, A.N. On boundary conditions containing derivatives of order greater than the order of the equation. Mat. Sb. 1950, 26, 35–56. [Google Scholar]
- Agarwal, R.P. Boundary Value Problems for High Ordinary Differential Equations; World Scientific: Singapore, 1986. [Google Scholar]
- Agarwal, R.P.; Regan, D.O. Boundary value problems for super linear second order Ordinary Delay Differential Equations. J. Differ. Equat. 1996, 130, 333–335. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Wong, F.H.; Lian, W.C. positive solutions of nonlinear singular Boundary value problems. Appl. Math. Lett. 1999, 12, 115–120. [Google Scholar] [CrossRef]
- Kılıçman, A.; Eltayeb, H. A note on defining singular integral as distribution and partial differential equations with convolution terms. Math. Comput. Model. 2009, 49, 327–336. [Google Scholar] [CrossRef]
- Kılıçman, A.; Ömer, A. On higher-order boundary value problems by using differential transformation method with convolution terms. J. Frankl. Inst. 2014, 351, 631–642. [Google Scholar] [CrossRef]
- Kılıçman, A.; Eltayeb, H. Note on Partial Differential Equations with Non-Constant Coefficients and Convolution Method. Appl. Math. Inf. Sci. 2012, 6, 59–63. [Google Scholar]
- Eltayeb, E.; Kılıçman, A. A Note on Solutions of Wave, Laplace’s and Heat Equations with Convolution Terms by Using Double Laplace Transform. Appl. Math. Lett. 2008, 21, 1324–1329. [Google Scholar] [CrossRef]
- Hussin, C.H.C.; Kılıçman, A. On the Solutions of Non-linear Higher-Order Boundary Value Problems by Using Differential Transformation Method and Adomian Decomposition Method. Math. Probl. Eng. 2011, 2011, 724927. [Google Scholar]
- Il’in, V.A.; Poznyak, E.G. Fundamentals of Mathematical Analysis; Nauka: Moscow, Russia, 1973; Volume 2. [Google Scholar]
- Moiseyev, Y.I. On the solution by a spectral method of a nonlocal boundary-value problem. Differ. Equat. 1999, 35, 1094–1100. [Google Scholar]
- Bari, N.K. Trigonometric Series; Nauka: Moscow, Russia, 1961. [Google Scholar]
- Lyusternik, L.A.; Sobolev, V.I. Elements of Functional Analysis; Nauka: Moscow, Russia, 1965. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amanov, D.; Ibragimov, G.; Kılıçman, A. On a Generalization of the Initial-Boundary Problem for the Vibrating String Equation. Symmetry 2019, 11, 73. https://doi.org/10.3390/sym11010073
Amanov D, Ibragimov G, Kılıçman A. On a Generalization of the Initial-Boundary Problem for the Vibrating String Equation. Symmetry. 2019; 11(1):73. https://doi.org/10.3390/sym11010073
Chicago/Turabian StyleAmanov, Djumaklich, Gafurjan Ibragimov, and Adem Kılıçman. 2019. "On a Generalization of the Initial-Boundary Problem for the Vibrating String Equation" Symmetry 11, no. 1: 73. https://doi.org/10.3390/sym11010073
APA StyleAmanov, D., Ibragimov, G., & Kılıçman, A. (2019). On a Generalization of the Initial-Boundary Problem for the Vibrating String Equation. Symmetry, 11(1), 73. https://doi.org/10.3390/sym11010073