gH-Symmetrically Derivative of Interval-Valued Functions and Applications in Interval-Valued Optimization
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Mathematical Programming Applications
5. Conclusions and Further Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bao, T.Q.; Mordukhovich, B.S. Set-valued optimization in welfare economics. In Advances in Mathematical Economics; Springer: Tokyo, Japan, 2010; Volume 13, pp. 113–153. [Google Scholar]
- Chung, B.D.; Yao, T.; Xie, C.; Thorsen, A. Robust Optimization Model for a Dynamic Network Design Problem Under Demand Uncertainty. Netw. Spat. Econ. 2010, 11, 371–389. [Google Scholar] [CrossRef] [Green Version]
- Ostrovsky, G.M.; Volin, Y.M.; Golovashkin, D.V. Optimization problem of complex system under uncertainty. Comput. Chem. Eng. 1998, 22, 1007–1015. [Google Scholar] [CrossRef]
- Mahanipour, A.; Nezamabadi-Pour, H. GSP: An automatic programming technique with gravitational search algorithm. Appl. Intell. 2019, 49, 1502–1516. [Google Scholar] [CrossRef]
- Ishibuchi, H.; Tanaka, H. Multiobjective programming in optimization of the interval objective function. Eur. J. Oper. Res. 1990, 48, 219–225. [Google Scholar] [CrossRef]
- Chanas, S.; Kuchta, D. Multiobjective programming in optimization of interval objective functions—A generalized approach. Eur. J. Oper. Res. 1996, 94, 594–598. [Google Scholar] [CrossRef]
- Bitran, G.R. Linear multiple objective problems with interval coefficients. Manag. Sci. 1980, 26, 694–706. [Google Scholar] [CrossRef]
- Ida, M. Multiple objective linear programming with interval coefficients and its all efficient solutions. In Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, 13 December 1996; Volume 2, pp. 1247–1249. [Google Scholar]
- Singh, D.; Dar, B.A.; Kim, D.S. KKT optimality conditions in interval valued multiobjective programming with generalized differentiable functions. Eur. J. Oper. Res. 2016, 254, 29–39. [Google Scholar] [CrossRef]
- Debnath, I.P.; Gupta, S.K. Necessary and Sufficient Optimality Conditions for Fractional Interval-Valued Optimization Problems. In Decision Science in Action; Springer: Singapore, 2019; pp. 155–173. [Google Scholar]
- Ghosh, D.; Singh, A.; Shukla, K.K.; Manchanda, K. Extended Karush-Kuhn-Tucker condition for constrained interval optimization problems and its application in support vector machines. Inform. Sci. 2019, 504, 276–292. [Google Scholar] [CrossRef]
- Tung, L.T. Karush-Kuhn-Tucker optimality conditions and duality for convex semi-infinite programming with multiple interval-valued objective functions. J. Appl. Math. Comput. 2019, 1–25. [Google Scholar] [CrossRef]
- Stefanini, L.; Arana-Jiménez, M. Karush-Kuhn-Tucker conditions for interval and fuzzy optimization in several variables under total and directional generalized differentiability. Fuzzy Sets Syst. 2019, 362, 1–34. [Google Scholar] [CrossRef]
- Chen, X.H.; Li, Z.H. On optimality conditions and duality for non-differentiable interval-valued programming problems with the generalized (F, ρ)-convexity. J. Ind. Manag. Optim. 2018, 14, 895–912. [Google Scholar] [CrossRef]
- Roman, R.C.; Precup, R.E.; David, R.C. Second order intelligent proportional-integral fuzzy control of twin rotor aerodynamic systems. Procedia Comput. Sci. 2018, 139, 372–380. [Google Scholar] [CrossRef]
- Wu, H.C. On interval-valued nonlinear programming problems. J. Math. Anal. Appl. 2008, 338, 299–316. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.C. The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. Eur. J. Oper. Res. 2007, 176, 46–59. [Google Scholar] [CrossRef]
- Wu, H.C. The optimality conditions for optimization problems with convex constraints and multiple fuzzy-valued objective functions. Fuzzy Optim. Decis. Mak. 2009, 8, 295–321. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Lodwick, W.A.; Rufian-Lizana, A. Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative. Fuzzy Optim. Decis. Mak. 2013, 12, 305–322. [Google Scholar] [CrossRef]
- Hukuhara, M. Integration des applications mesurables dont la valeur est un compact convexe. Funkcial. Ekvac. 1967, 10, 205–223. [Google Scholar]
- Stefanini, L.; Bede, B. Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. 2009, 71, 1311–1328. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Zhang, Z.H. Properties of interval vector-valued arithmetic based on gH-difference. Math. Comput. 2015, 4, 7–12. [Google Scholar]
- Stefanini, L. A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Syst. 2010, 161, 1564–1584. [Google Scholar] [CrossRef]
- Markov, S. Calculus for interval functions of a real variable. Computing 1979, 22, 325–337. [Google Scholar] [CrossRef]
- Thomson, B.S. Symmetric Properties of Real Functions; Dekker: New York, NY, USA, 1994. [Google Scholar]
- Minch, R.A. Applications of symmetric derivatives in mathematical programming. Math. Program. 1971, 1, 307–320. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Ye, G.; Zhao, D.; Liu, W. gH-Symmetrically Derivative of Interval-Valued Functions and Applications in Interval-Valued Optimization. Symmetry 2019, 11, 1203. https://doi.org/10.3390/sym11101203
Guo Y, Ye G, Zhao D, Liu W. gH-Symmetrically Derivative of Interval-Valued Functions and Applications in Interval-Valued Optimization. Symmetry. 2019; 11(10):1203. https://doi.org/10.3390/sym11101203
Chicago/Turabian StyleGuo, Yating, Guoju Ye, Dafang Zhao, and Wei Liu. 2019. "gH-Symmetrically Derivative of Interval-Valued Functions and Applications in Interval-Valued Optimization" Symmetry 11, no. 10: 1203. https://doi.org/10.3390/sym11101203
APA StyleGuo, Y., Ye, G., Zhao, D., & Liu, W. (2019). gH-Symmetrically Derivative of Interval-Valued Functions and Applications in Interval-Valued Optimization. Symmetry, 11(10), 1203. https://doi.org/10.3390/sym11101203