Next Article in Journal
Risk Control Standard and Construction Control Technology of Shield Tunnel Passing through Irregular-Plate Bridge
Next Article in Special Issue
Viscosity Approximation Methods for a General Variational Inequality System and Fixed Point Problems in Banach Spaces
Previous Article in Journal
A Multi-Stage Homotopy Perturbation Method for the Fractional Lotka-Volterra Model
Previous Article in Special Issue
A Unified Proximity Algorithm with Adaptive Penalty for Nuclear Norm Minimization
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some Fixed Point Theorems for Quadratic Quasicontractive Mappings

Department of Mathematics and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Symmetry 2019, 11(11), 1329; https://doi.org/10.3390/sym11111329
Submission received: 8 October 2019 / Revised: 22 October 2019 / Accepted: 22 October 2019 / Published: 24 October 2019
(This article belongs to the Special Issue Fixed Point Theory and Computational Analysis with Applications)

Abstract

:
In this paper, we introduce the notion of quadratic quasicontractive mapping and prove two generalizations of some classical fixed point theorems. Furthermore, we present some examples to support our main results.

1. Introduction

In 1962, Edelstein [1] proved the following fixed point theorem.
Theorem 1.
Let X , d be a compact metric space and let T : X X be a mapping such that d T x , T y < d x , y for all x , y X with x y . Then, T has a unique fixed point.
In 1973, Hardy and Rogers [2] extended Theorem 1. They proved the following theorem.
Theorem 2.
Let X , d be a compact metric space and let T : X X be a mapping satisfying inequality
d T x , T y < A · d x , T x + B · d y , T y + C · d x , y
for all x , y X and x y , where A , B , C are positive and A + B + C = 1 . Then, T has a unique fixed point.
Other generalizations of Theorem 1 have appeared in recent years, see [3,4,5,6,7,8].
Let X be a Banach space and C a closed convex subset of X. Greguš [9] proved the following theorem.
Theorem 3.
Let T : X X be a mapping satisfying inequality
T x T y a x y + b x T x + c y T y
for all x , y C , where 0 < a < 1 , b 0 , c 0 and a + b + c = 1 . Then, T has a unique fixed point.
Many theorems that are closely related to Greguš’s Theorem can be found in [10,11,12,13,14,15,16,17,18,19,20,21]. In this paper, we will prove two generalizations of Theorem 1, Theorem 2, and Theorem 3.

2. Main Results

Before stating the main results, we introduce the following type of quasicontraction.
Definition 1.
A mapping T : X X of a metric space X into itself is said to be a quadratic quasicontractive if there exists a 0 , 1 2 such that
d 2 T x , T y a · d 2 x , T x + a · d 2 y , T y + 1 2 a · d 2 x , y
for all x , y X and a strict quadratic quasicontraction if in Relation (3) we have the strict inequality for all x , y X with x y .
Lemma 1.
If α , β , γ R , α , β , γ 0 , a 0 , 1 2 and b 0 , 1 , then
( i ) b α + 1 b β b α 2 + 1 b β 2 ,
( i i ) a α + a β + 1 2 a γ a α 2 + a β 2 + 1 2 a γ 2 .
Proof. 
(i) Inequality (4) is equivalent to
b 2 α 2 + 2 b 1 b α β + 1 b 2 β 2 b α 2 + 1 b β 2
or
b 1 b α β 2 0 ,
which is obvious.
(ii) We have by (i)
a α + a β + 1 2 a γ = 2 a · α + β 2 + 1 2 a γ 2 a · α + β 2 2 + 1 2 a γ 2 2 a · α 2 + β 2 2 + 1 2 a γ 2 = a α 2 + a β 2 + 1 2 a γ 2 .
 □
Remark 1.
If T satisfies Inequality (1), then T is a strict quadratic quasicontraction. Indeed, suppose that T satisfies Inequality (1). Then, we have by symmetry
d T x , T y < A · d y , T y + B · d x , T x + C · d x , y .
By Inequalities (1) and (8), we obtain that
d T x , T y < A + B 2 · d x , T x + d y , T y + C · d x , y
and A + B 2 + A + B 2 + C = A + B + C = 1 .
By Inequality (9) and Lemma 1 taking α = d x , T x , β = d y , T y and γ = d x , y , we obtain
d 2 T x , T y < A + B 2 · d 2 x , T x + A + B 2 · d 2 y , T y + C · d 2 x , y ,
hence T satisfies Inequality (3).
Remark 2.
We denote by
E n x , y = a · d n x , T x + a · d n y , T y + 1 2 a · d n x , y ,
for n 1 , 2 , x , y X .
By Lemma 1, we have that d 2 T x , T y < E 2 x , y if d T x , T y < E 1 x , y .
The following example shows that not every strict quadratic quasicontraction satisfies Inequality (1).
Example 1.
Let X = 1 , 1 , d x , y = x y and T : X X , T x = 0 for 1 x 1 2 and T x = 1 for 1 2 < x 1 . Then, T satisfies Inequality (3) but does not verify Inequality (1).
If x , y 1 , 1 2 or x , y 1 2 , 1 , then d T x , T y = 0 and Inequality (3) is obvious.
If x 1 , 1 2 and y 1 2 , 1 , then d T x , T y = 1 and
E 2 x , y = 4 9 · d 2 x , T x + 4 9 · d 2 y , T y + 1 9 · d 2 x , y = 4 9 x 2 + 4 9 y + 1 2 + 1 9 y x 2 4 9 x 2 + 4 9 1 2 + 1 2 + 1 9 1 2 x 2 = 1 + 4 9 x 2 + 1 9 1 2 x 2 > 1 .
Hence, Inequality (3) holds with a = 4 9 .
For x = 0 and y = 3 4 , we have d T x , T y = 1 and
E 1 x , y = a · d x , T x + a · d y , T y + 1 2 a · d x , y = 7 a 4 + 3 1 2 a 4 = a + 3 4 < 1 ,
so Inequality (1) is not satisfied.
Theorem 4.
Let X , d be a compact metric space and let T : X X be a strict quadratic quasicontraction. Then, T has a unique fixed point v X . Moreover, if T is continuous, then, for each x X , the sequence of iterates T n x converges to v.
Proof. 
Taking y = T x in Inequality (3), we have for all x X with x T x
d 2 T x , T 2 x < a · d 2 x , T x + a · d 2 T x , T 2 x + 1 2 a · d 2 x , T x .
This implies d T x , T 2 x < d x , T x .
Let β = inf d x , T x : x X . By compactness of X, there exists a sequence x n X such that x n u X , T x n v X and β = lim n d x n , T x n = d u , v .
If there exists a subsequence x n k of x n such that x n k = v for every k N , then u = v and T v = v . Otherwise, there exists N N such that x n v for every n N . Taking x = x n and y = v in Inequality (3), we obtain
d 2 T x n , T v < a · d 2 x n , T x n + a · d 2 v , T v + 1 2 a · d 2 x n , v .
As n , we get
d 2 v , T v a · d 2 u , v + a · d 2 v , T v + 1 2 a · d 2 u , v .
This implies d v , T v d u , v = β . By definition of β , we have d v , T v = β .
If β > 0 , since d T 2 v , T v < d v , T v = β , we have a contradiction. Therefore, β = 0 , so u = v .
If w is another fixed point of T, by Inequality (3), we have
d 2 T v , T w < a · d 2 v , T v + a · d 2 w , T w + 1 2 a · d 2 v , w ,
where
d 2 v , w < 1 2 a · d 2 v , w ,
which is a contradiction.
Now suppose T is continuous. Take any x 0 X and define a sequence x n = T n x 0 . If there exists N N 0 such that x N = v , then x n = v for all n N and then x n v . Otherwise, we have x n v for all n N 0 .
Since v is unique, we have x n x n + 1 for every n N 0 . Therefore, d x n + 1 , x n = d T x n , T x n 1 < d x n , x n 1 for every n N , so sequence d x n + 1 , x n is decreasing and positive. Let b = lim n d x n + 1 , x n . The assumption that b > 0 leads to the contradiction. By compactness of X, sequence x n contains a subsequence x n k such that x n k z X as k .
Because T is continuous, we have
0 < b = lim n d x n k + 1 , x n k = d T z , z ,
and
0 < b = lim n d x n k + 2 , x n k + 1 = d T 2 z , T z .
Then, we get d T 2 z , T z = d T z , z = b > 0 , which is a contradiction. Thus, b = 0 .
Since
d 2 x n + 1 , v = d 2 T x n , T v < a · d 2 x n , T x n + a · d 2 v , T v + 1 2 a · d 2 x n , v ,
we obtain
c n + 1 2 < 1 2 a · c n 2 + a · b n 2 ,
where c n = d x n , v and b n = d x n , x n + 1 .
Since d x n , v d x n + 1 , v + d x n , x n + 1 , we get c n c n + 1 + b n , hence
c n + 1 2 < 1 2 a · c n + 1 + b n 2 + a · b n 2 .
This implies
c n + 1 1 2 a 2 a · b n 2 < 1 a + 1 2 a 2 a 2 · b n 2 .
Taking the limit as n , we obtain lim n c n + 1 = 0 , hence x n v .  □
Remark 3.
In Example 1, X is a compact metric space and T is a strict quadratic quasicontraction and asymptotic regular.
In the following example, T is a strict quadratic quasicontraction and not asymptotic regular.
Example 2.
Let X = 2 , 1 0 1 , 2 , d x , y = x y and T : X X ,
T x = 1 x 2 , i f x 2 , 1 , 0 , i f x 1 , 0 , 1 x 2 , i f x 1 , 2 .
Then, T is not asymptotic regular and satisfies the hypothesis of Theorem (4).
It is obvious that X , d is a compact metric space. By induction, it is easy to prove that
T n 2 = 1 n · 2 n + 1 2 n f o r e v e r y n 1 .
Thus,
d T n 2 , T n + 1 2 = 2 n + 1 + 1 2 n + 1 + 2 n + 1 2 n > 2 ,
so T is not asymptotic regular.
If x, y 2 , 1 , x y , then
d 2 T x , T y = x y 2 4 < 1 4 a n d
E 2 x , y = a · 1 3 x 2 2 + a · 1 3 y 2 2 + 1 2 a y x 2 > 4 a + 4 a = 8 a .
For a > 1 32 , we have d 2 x , y < E 2 x , y .
If x 2 , 1 , y = 1 , then
d T x , T y = 1 x 2 a n d
E 1 x , y = a · 1 3 x 2 + a + 1 2 a x + 1 = 2 7 a 2 · x + 2 a 2 .
Taking a 3 7 , we have 1 a 7 a 3 > 1 > x , so 7 a 3 · x < 1 a , then 1 x < 2 7 a · x + 2 a . Hence, d T x , T y < E 1 x , y and by Remark (2) we get d 2 x , y < E 2 x , y .
If x 2 , 1 , y = 0 , then
d T x , T y = 1 x 2 a n d
E 1 x , y = a · 1 3 x 2 + 1 2 a · x = a 2 2 · x + a 2 .
Since x < 1 and a < 1 2 , we have 1 a · x < a 1 , so 1 x < a 2 · x + a . Thus, d T x , T y < E 1 x , y , and then d 2 x , y < E 2 x , y .
If x 2 , 1 , y 1 , 2 , then
d T x , T y = 1 x 2 1 y 2 = 2 + y x 2 a n d
E 1 x , y = a · 1 3 x 2 + a · 1 + 3 y 2 + 1 2 a · y x = 2 · a + 2 a · y x 2 .
Since y x > 2 and a < 1 , we have 2 a 2 > a 1 · y x , so 2 + y x < 2 · a + 2 a · y x . Thus, d T x , T y < E 1 x , y , and then d 2 x , y < E 2 x , y .
If x , y 1 , 0 , x y , we have d 2 x , y = 0 < E 2 x , y .
If x = 1 , y 1 , 2 , then
d T x , T y = 1 + y 2 a n d
E 1 x , y = a + a · 1 + 3 y 2 + 1 2 a · y + 1 = 2 a y + 1 2 .
Since y 1 and a < 1 2 , we have 1 + y < 2 a y + 1 . Thus, d T x , T y < E 1 x , y , and then d 2 x , y < E 2 x , y .
If x = 0 , y 1 , 2 , then
d T x , T y = 1 + y 2 a n d
E 1 x , y = a · 1 + 3 y 2 + 1 2 a · y = 2 a y + a 2 .
For y > 1 , we have 1 a < 1 a y , so 1 + y < 2 a y + a . Thus, d T x , T y < E 1 x , y , and then d 2 x , y < E 2 x , y . For y = 1 , we have d T x , T y = 1 = E 1 x , y , but E 2 x , y = 4 a + 1 2 a = 1 + 2 a > d 2 T x , T y .
If x , y 1 , 2 , x y , then
d T x , T y = y x 2 1 2 a n d
E 1 x , y = a · 1 + 3 x 2 + a · 1 + 3 y 2 + 1 2 a · y x 4 a .
Taking a > 1 8 , we get d T x , T y < E 1 x , y , and then d 2 x , y < E 2 x , y .
We note that, for a = 4 9 , we have that T is a strict quadratic quasicontraction.
Lemma 2.
Let C be a nonempty closed subset of a complete metric space X , d and let T : C C be a quadratic quasicontraction mapping. Assume that there exist constants a , b R such that 0 a < 1 and b > 0 . If for arbitrary x C there exists u C such that d u , T u a · d x , T x and d u , x b · d x , T x , then T has a unique fixed point.
Proof. 
Let x 0 C be an arbitrary point. Consider a sequence x n C satisfying
d T x n + 1 , x n + 1 a · d T x n , x n , d x n + 1 , x n b · d T x n , x n , n = 0 , 1 , 2 ,
Since
d x n + 1 , x n b · d T x n , x n b · a · d T x n 1 , x n 1 b · a n · d T x 0 , x 0 ,
it is easy to see that x n is a Cauchy sequence. Because C is complete, there exists v C such that lim n x n = v . By Inequalities (11) and the sandwich theorem, we get lim n d x n , T x n = 0 and then lim n T x n = v and we have
d 2 T x n , T v a · d 2 x n , T x n + a · d 2 v , T v + 1 2 a d 2 x n , v .
Taking the limit as n , we obtain
d 2 v , T v a d 2 v , T v .
This implies d v , T v = 0 , so T v = v .
If u is another fixed point of T, then we have
d 2 T u , T v a · d 2 u , T u + a · d 2 v , T v + 1 2 a d 2 u , v ,
hence
d 2 u , v 1 2 a d 2 u , v .
Therefore, d u , v = 0 and v is the unique fixed point of T.  □
Theorem 5.
Let X be a Banach space and C be a closed convex subset of X. Let T : C C be a mapping satisfying the inequality:
T x T y 2 a · x T x 2 + a · y T y 2 + b · x y 2
for all x , y C , where 0 < a < 1 2 , b = 1 2 a . Then, T has a unique fixed point.
Proof. 
Taking y = T x in Inequality (12), we have
T x T 2 x 2 a · x T x 2 + a · T x T 2 x 2 + b · x T x 2 .
Then,
1 a · T x T 2 x 2 a + b · x T x 2 = 1 a · x T x 2 ,
so
T x T 2 x x T x
for all x C .
Let x C fixed and z = 1 2 T 2 x + 1 2 T 3 x . Since C is convex, we have z C . Then, by Inequalities (12) and (13), we get
T x T 3 x 2 a · x T x 2 + a · T 2 x T 3 x 2 + b · x T 2 x 2 2 a · x T x 2 + b · x T x + T x T 2 x 2 2 a + 4 b · x T x 2 = 1 + 3 b · x T x 2 ,
so
T x T 3 x 1 + 3 b · x T x .
Therefore,
T x z = 1 2 T x T 2 x + 1 2 T x T 3 x 1 2 T x T 2 x + 1 2 T x T 3 x 1 2 x T x + 1 2 1 + 3 b · x T x = 1 + 1 + 3 b 2 · x T x .
In addition,
T 2 x z = 1 2 T 2 x T 3 x 1 2 x T x .
Now, by Inequalities (12), (13) and (14), we obtain
T 2 x T z 2 a · T x T 2 x 2 + a · z T z 2 + b · T x z 2 a · x T x 2 + a · z T z 2 + b · 1 + 1 + 3 b 2 2 · x T x 2 = a · z T z 2 + a + b · 1 + 1 + 3 b 2 2 · x T x 2 .
In addition, by Inequalities (12), (13) and (15), we have
T 3 x T z a · T 2 x T 3 x 2 + a · z T z 2 + b · T 2 x z 2 a · x T x 2 + a · z T z 2 + b 4 · x T x 2 = a + b 4 · x T x 2 + a · z T z 2 .
Since
z T z = 1 2 T 2 x T z + 1 2 T 3 x T z 1 2 T 2 x T z + 1 2 T 3 x T z ,
by Inequalities (16) and (17), we obtain
z T z 1 2 · a · z T z 2 + a + b · 1 + 1 + 3 b 2 2 · x T x 2 1 2 + 1 2 · a · z T z 2 + a + b 4 · x T x 2 1 2 .
If x = T x , then x is a fixed point of T.
Otherwise, dividing Inequality (18) by 1 2 · x T x , we get
2 · z T z x T x a · z T z 2 x T x 2 + a + b · 1 + 1 + 3 b 2 2 1 2 + a · z T z 2 x T x 2 + a + b 4 1 2 .
Denoting z T z 2 x T x 2 = t , we obtain
2 t a · t + a + b · 1 + 1 + 3 b 2 4 1 2 + a · t + a + b 4 1 2 ,
where
2 a + a t + b · 1 + 1 + 3 b 2 4 t 1 2 + a + a t + b 4 t 1 2 .
Let
f t = a + a t + b · 1 + 1 + 3 b 2 4 t 1 2 + a + a t + b 4 t 1 2
for all t > 0 . Obviously, f is a decreasing function and
f 1 = 2 a + b · 1 + 1 + 3 b 2 4 1 2 + 2 a + b 4 1 2 = 1 b + b · 1 + 1 + 3 b 2 4 1 2 + 1 3 b 4 1 2 .
We claim that f 1 < 2 .
Let α = 1 + 3 b . Obviously, since b 0 , 1 , we have α 1 , 2 and
f 1 = 1 α 2 1 3 + α 2 1 12 · 1 + α 2 1 2 + 1 α 2 1 4 1 2 = α 4 + 2 α 3 4 α 2 2 α + 15 12 1 2 + 5 α 2 4 1 2 .
Now,
f 1 < 2 α 4 + 2 α 3 4 α 2 2 α + 15 12 1 2 < 2 5 α 2 4 1 2 α 4 + 2 α 3 4 α 2 2 α + 15 12 < 4 + 5 α 2 4 2 5 α 2 α 4 + 2 α 3 4 α 2 2 α < 24 2 5 α 2 α α + 2 α 2 1 < 24 α 2 1 2 + 5 α 2 2 + 5 α 2 < 24 α α + 2 .
Let h : 1 , 2 R , h α = 2 + 5 α 2 24 α α + 2 .
To prove Inequality (19), we will show that h is an increasing function and h 2 = 0 .
We have h α = 2 + 5 α 2 12 α + 12 α + 2 and h α = α 5 α 2 + 12 α 2 12 α + 2 2 . However,
h α > 0 48 α + 1 5 α 2 > α 3 α + 2 2 48 5 α 2 > α 3 α + 2 2 α + 1 = α 5 + 4 α 4 + 4 α 3 α + 1 .
Since φ : 1 , 2 R , φ α = 48 5 α 2 is a decreasing function with φ 2 = 48 , and ψ : 1 , 2 R , ψ α = α 5 + 4 α 4 + 4 α 3 α + 1 is an increasing function with ψ 2 = 128 3 < 48 , we obtain Inequality (20). This implies Inequality (19), so f 1 < 2 . Since f is a decreasing function and f t 2 , there exists c < 1 such that t c . Therefore, z T z c x T x .
Now, since
z x 1 2 T 2 x x + 1 2 T 3 x x 1 2 T 2 x T x + T x x + 1 2 T 3 x T 2 x + T 2 x T x + T x x 5 2 x T x ,
applying Lemma 2, we get that T has a unique fixed point.  □
Example 3.
Let X = l R be the set of bounded sequences of real numbers and x = sup n N x n , where x = x n n N . It is known that X , · is a Banach space. Let C = x X : x 1 and T : C C ,
T x = 1 2 , i f x = 1 , 1 , i f x n 1 2 , 1 f o r e v e r y n N , 0 , o t h e r w i s e ,
where x = x n n N , c = c , c , c , . It is obvious that C is closed, convex and not compact. Since T n 1 = 1 2 if n is odd and T n 1 = 1 if n is even, we note that T is not asymptotic regular.
If x = 1 and y = y n n N where y n 1 2 , 1 for every n N , then
d T x , T y = 3 2 a n d
E 1 x , y = 3 2 a + a · sup n N 1 + y n + 1 2 a · sup n N 1 + y n = 3 2 a + 1 a · sup n N 1 + y n 3 2 a + 3 2 1 a = 3 2 ,
so d T x , T y E 1 x , y , and then d 2 x , y E 2 x , y .
If x = 1 and y = y n n N where there exists n 0 such that y n 0 1 2 , 1 , then
d T x , T y = 1 2 a n d
E 1 x , y = 3 2 a + a · sup n N y n + 1 2 a · sup n N 1 + y n 3 2 a .
Hence, for a 1 3 , we have d T x , T y E 1 x , y , and then d 2 x , y E 2 x , y .
If x = x n n N where x n 1 2 , 1 for every n N and y = y n n N where there exists n 0 such that y n 0 1 2 , 1 , then
d T x , T y = 1 a n d
E 2 x , y = a · sup n N x n + 1 2 + a · sup n N y n 2 + 1 2 a · sup n N x n y n 2 9 4 a .
Hence, for a 4 9 , we have d 2 T x , T y E 2 x , y . We note that x = 1 2 and y = 0 , and we have E 1 x , y = 3 2 a + 1 2 1 2 a = 1 + a 2 < 1 = d T x , T y . Therefore, T does not satisfy Theorem (3).
In other cases d 2 T x , T y = 0 E 2 x , y .

3. Conclusions

We have introduced the class of quadratic quasicontractive mapping and prove two generalizations of some classical fixed point theorems: Edelstein’s theorem, Hardy-Rogers’s theorem and Gregus’s theorem. Furthermore, we have presented some examples to support our main results.

Author Contributions

Conceptualization, O.P. and G.S.; methodology, O.P. and G.S.; investigation, O.P. and G.S.; writing—original draft preparation, O.P. and G.S.; writing—review and editing, O.P. and G.S.

Funding

The author declares that there is no funding for the present paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Edelstein, M. On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 1962, 37, 74–79. [Google Scholar] [CrossRef]
  2. Hardy, G.E.; Rogers, T.D. A generalization of a fixed point theorem of Reich. Can. Math. Bull. 1973, 16, 201–206. [Google Scholar] [CrossRef]
  3. Gornicki, J. Fixed point theorems for Kannan type mappings. J. Fixed Point Theor. Appl. 2017, 19, 2145–2152. [Google Scholar] [CrossRef] [Green Version]
  4. Meir, A.; Keeler, E. A theorem on contraction mappings. J. Math. Anal. Appl. 1969, 28, 326–329. [Google Scholar] [CrossRef] [Green Version]
  5. Suzuki, T. A new type of fixed point theorem in metric spaces. Nonlinear Anal. TMA 2003, 71, 5313–5317. [Google Scholar] [CrossRef]
  6. Suzuki, T. Some comments on Edelstein’s fixed point theorems in ν-generalized metric spaces. Bull. Kyushu Inst. Tech. Pure Appl. Math. 2018, 65, 23–42. [Google Scholar]
  7. Suzuki, T. Edelstein’s fixed point theorem in generalized metric spaces. J. Nonlinear Convex Anal. 2015, 16, 2301–2309. [Google Scholar]
  8. Suzuki, T. Another generalization of Edelstein’s fixed point theorem in generalized metric spaces. Linear Nonlinear Anal. 2016, 2, 271–279. [Google Scholar]
  9. Greguš, M., Jr. A fixed point theorem in Banach space. Boll. Un. Mat. Ital. Sez. A 1980, 17, 193–198. [Google Scholar]
  10. Abdeljawad, T.; Karapinar, E. A common fixed point theorem of a Greguš type on convex cone metric spaces. J. Comput. Anal. Appl. 2011, 13, 609–621. [Google Scholar]
  11. Ciric, L.B. On a common fixed point theorem of a Greguš type. Publ. Inst. Math. (Belgrad) 1991, 63, 174–178. [Google Scholar]
  12. Ciric, L.B. On a generalization of a Greguš fixed point theorem. Czech. Math. J. 2000, 50, 449–458. [Google Scholar] [CrossRef]
  13. Ciric, L.B.; Ume, J.S. Common fixed points via weakly biased Greguš type mappings. Acta Math. Univ. Comenianae 2003, 72, 185–190. [Google Scholar]
  14. Ciric, L.B. On Diviccaro, Fisher and Sessa open questions. Arch. Math. 1993, 29, 145–152. [Google Scholar]
  15. Diviccaro, M.L.; Fisher, B.; Sessa, S. A common fixed point theorem of Greguš type. Publ. Math. Debrecen 1987, 34, 83–89. [Google Scholar]
  16. Djoudi, A.; Aliouche, A. Common fixed point theorems of Greguš type for weakly compatible mappings satisfying contractive conditions of integral type. J. Math. Anal. Appl. 2007, 329, 31–45. [Google Scholar] [CrossRef]
  17. Djoudi, A.; Nisse, L. Greguš type fixed points for weakly compatible mappings. Bull. Belg. Math. Soc. 2003, 10, 369–378. [Google Scholar]
  18. Fisher, B.; Sessa, S. On a fixed point theorem of Greguš. Internat. J. Math. Math. Sci. 1986, 9, 23–28. [Google Scholar] [CrossRef]
  19. Mukherjee, R.N.; Verna, V. A note on a fixed point theorem of Greguš. Math. Japonica 1988, 33, 745–749. [Google Scholar]
  20. Murthy, P.P.; Cho, Y.J.; Fisher, B. Compatible mappings of type (A) and common fixed points of Greguš. Glasnik Math. 1995, 30, 335–341. [Google Scholar]
  21. Pathak, H.K.; Cho, Y.J.; Khan, S.M.; Madharia, B. Compatible mappings of type (C) and common fixed point theorems of Greguš type. Demonstratio Math. 1998, 31, 499–518. [Google Scholar]

Share and Cite

MDPI and ACS Style

Popescu, O.; Stan, G. Some Fixed Point Theorems for Quadratic Quasicontractive Mappings. Symmetry 2019, 11, 1329. https://doi.org/10.3390/sym11111329

AMA Style

Popescu O, Stan G. Some Fixed Point Theorems for Quadratic Quasicontractive Mappings. Symmetry. 2019; 11(11):1329. https://doi.org/10.3390/sym11111329

Chicago/Turabian Style

Popescu, Ovidiu, and Gabriel Stan. 2019. "Some Fixed Point Theorems for Quadratic Quasicontractive Mappings" Symmetry 11, no. 11: 1329. https://doi.org/10.3390/sym11111329

APA Style

Popescu, O., & Stan, G. (2019). Some Fixed Point Theorems for Quadratic Quasicontractive Mappings. Symmetry, 11(11), 1329. https://doi.org/10.3390/sym11111329

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop