Necessary Optimality Conditions in Isoperimetric Constrained Optimal Control Problems
Abstract
:1. Introduction
2. Problem Formulation and Auxiliary Results
3. Main Result: Necessary Optimality Conditions for (CP)
- (i)
- The algebraic systems in and describe the critical points associated with with respect to the control variable and the state variable .
- (ii)
- The differential Equations and and the conditions formulated in , , and represent the Euler–Lagrange ODEs, respectively,
4. Conclusions
Funding
Conflicts of Interest
References
- Mititelu, Ş.; Treanţă, S. Efficiency conditions in vector control problems governed by multiple integrals. J. Appl. Math. Comput. 2018, 57, 647–665. [Google Scholar] [CrossRef]
- Treanţă, S. On a new class of vector variational control problems. Numer. Funct. Anal. Optim. 2018, 39, 1594–1603. [Google Scholar] [CrossRef]
- Treanţă, S. KT-geodesic pseudoinvex control problems governed by multiple integrals. J. Nonlinear Convex Anal. 2019, 20, 73–84. [Google Scholar]
- Treanţă, S.; Arana-Jiménez, M. KT-pseudoinvex multidimensional control problem. Optim. Control Appl. Meth. 2018, 39, 1291–1300. [Google Scholar] [CrossRef]
- Treanţă, S.; Arana-Jiménez, M. On generalized KT-pseudoinvex control problems involving multiple integral functionals. Eur. J. Control 2018, 43, 39–45. [Google Scholar] [CrossRef]
- Pontriaguine, L.; Boltianski, V.; Gamkrelidze, R.; Michtchenko, E. Théorie Mathématique des Processus Optimaux; Edition MIR: Moscou, Russia, 1974. [Google Scholar]
- Treanţă, S. PDEs of Hamilton-Pfaff type via multi-time optimization problems. U.P.B. Sci. Bull. Ser. 2014, 76, 163–168. [Google Scholar]
- Treanţă, S. Higher-order Hamilton dynamics and Hamilton-Jacobi divergence PDE. Comput. Math. Appl. 2018, 75, 547–560. [Google Scholar] [CrossRef]
- Treanţă, S. Noether-type first integrals associated with autonomous second-order Lagrangians. Symmetry 2019, 1088, 11. [Google Scholar] [CrossRef]
- Hestenes, M.R. Calculus of Variations and Optimal Control Theory; John Wiley & Sons: New York, NY, USA, 1966. [Google Scholar]
- Maurer, H.; Pickenhain, S. Second order sufficient conditions for control problems with mixed control-state constraints. J. Optim. Theory Appl. 1995, 86, 649–667. [Google Scholar] [CrossRef]
- Rosenblueth, J.F.; Licea, G.S. A Direct Sufficiency Proof for a Weak Minimum in Optimal Control. Appl. Math. Sci. 2010, 4, 253–269. [Google Scholar]
- Rosenblueth, J.F.; Licea, G.S. Sufficient Variational Conditions for Isoperimetric Control Problems. Int. Math. Forum 2011, 6, 303–324. [Google Scholar]
- Treanţă, S. Sufficient efficiency conditions associated with a multidimensional multiobjective fractional variational problem. J. Multid. Model. Optim. 2018, 1, 1–13. [Google Scholar]
- Agrachev, A.A.; Stefani, G.; Zezza, P. Strong optimality for a bang-bang trajectory. SIAM J. Control Optim. 2002, 41, 991–1014. [Google Scholar] [CrossRef]
- Caputo, M.R. Economic characterization of reciprocal isoperimetric control problems. J. Optim. Theory Appl. 1998, 98, 325–350. [Google Scholar] [CrossRef]
- Caputo, M.R. Economic characterization of reciprocal isoperimetric control problems revisited. J. Optim. Theory Appl. 1999, 101, 723–730. [Google Scholar] [CrossRef]
- Aronsson, G.; Barron, E.N. L∞ variational problems with running costs and constraints. Appl. Math. Optim. 2012, 65, 53–90. [Google Scholar] [CrossRef]
- Evans, L.C. An Introduction to Mathematical Optimal Control Theory; Lecture Notes; Department of Mathematics, University of California: Berkeley, CA, USA, 2008. [Google Scholar]
- Kalaba, R.; Spingarn, K. Control, Identification, and lnput Optimization; Plenum: New York, NY, USA, 1982. [Google Scholar]
- Kalaba, R.; Spingarn, K. Automatic Solution of Optimal Control Problems III: Differential and Integral Constraints. Control Syst. Mag. 1984, 4, 3–8. [Google Scholar] [CrossRef]
- Lee, E.B.; Markus, L. Foundations of Optimal Control Theory; Wiley: New York, NY, USA, 1967. [Google Scholar]
- Barbu, V.; Lasiecka, I.; Tiba, D.; Vârsan, C. Analysis and Optimization of Differential Systems. In Proceedings of the International Working Conference on Analysis and Optimization of Differential Systems, IFIP TC7/WG7.2, Constanta, Romania, 10–14 September 2002; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003. [Google Scholar]
- van Brunt, B. The Calculus of Variations; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Treanţă, S. PDE-constrained vector variational problems governed by curvilinear integral functionals. Appl. Anal. Optim. 2019, 3, 83–101. [Google Scholar]
- Treanţă, S. On Controlled Variational Inequalities Involving Convex Functionals. In Optimization of Complex Systems: Theory, Models, Algorithms and Applications. WCGO 2019, Advances in Intelligent Systems and Computing; Le Thi, H., Le, H., Pham Dinh, T., Eds.; Springer: Cham, Switzerland, 2020; Volume 991, pp. 164–174. [Google Scholar]
- Treanţă, S. Constrained variational problems governed by second-order Lagrangians. Appl. Anal. 2018. [Google Scholar] [CrossRef]
- Treanţă, S. On a modified optimal control problem with first-order PDE constraints and the associated saddle-point optimality criterion. Eur. J. Control 2019. [Google Scholar] [CrossRef]
- Treanţă, S. Multiobjective fractional variational problem on higher-order jet bundles. Commun. Math. Stat. 2016, 4, 323–340. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urziceanu, S.-A. Necessary Optimality Conditions in Isoperimetric Constrained Optimal Control Problems. Symmetry 2019, 11, 1380. https://doi.org/10.3390/sym11111380
Urziceanu S-A. Necessary Optimality Conditions in Isoperimetric Constrained Optimal Control Problems. Symmetry. 2019; 11(11):1380. https://doi.org/10.3390/sym11111380
Chicago/Turabian StyleUrziceanu, Silviu-Aurelian. 2019. "Necessary Optimality Conditions in Isoperimetric Constrained Optimal Control Problems" Symmetry 11, no. 11: 1380. https://doi.org/10.3390/sym11111380
APA StyleUrziceanu, S.-A. (2019). Necessary Optimality Conditions in Isoperimetric Constrained Optimal Control Problems. Symmetry, 11(11), 1380. https://doi.org/10.3390/sym11111380