Ideals of Numerical Semigroups and Error-Correcting Codes
Abstract
:1. Introduction
2. Numerical Semigroups
2.1. Basic Notions
2.2. Frobenius Number and Symmetric Semigroups
2.3. Semigroups Generated by Two Integers
3. Ideals of Numerical Semigroups
3.1. Ideals
3.2. The Frobenius Number of an Ideal
3.3. Upper Bounding the Frobenius Number of an Ideal
3.4. Maximum Sparse Ideals
- 1.
- The Frobenius number of the ideal I equals .
- 2.
- for some i such that .
3.5. The Ideal of Frobenius Numbers of Sparse Ideals
4. One-Point Algebraic-Geometry Codes
5. Ideals and the Length of Algebraic-Geometry Codes
5.1. The Geil–Matsumoto Bound
5.2. Coincidences of Lewittes’s and the Geil–Matsumoto Bound
- 1.
- ;
- 2.
- ;
- 3.
- for all .
5.3. Simplified Computation
- 1.
- ;
- 2.
- For all there exists , such that .
- 1.
- If is the maximum of the generators that are strictly smaller than , then .
- 2.
- If is the maximum of the generators that are strictly smaller than , then .
6. Ideals and Isometry-Dual Sequences of One-Point Algebraic-Geometry Codes
6.1. Characterization of Isometry-Dual Sequences of Algebraic-Geometry Codes by Means of Sparse Ideals
6.2. Inclusion Relationship of Sparse Ideals
- 1.
- ;
- 2.
- ;
- 3.
- ;
- 4.
- ;
- 5.
- .
6.3. Puncturing Sequences of Isometry-Dual One-Point Algebraic-Geometry Codes
7. Ideals and Generalized Hamming Weights
7.1. Feng–Rao Numbers
7.2. Bound on the Feng–Rao Numbers
7.3. Bound on the Generalized Hamming Weights
7.4. Sharpness of the Bound
- 1.
- The inequality (6) is indeed an equality. That bound is obtained when one applies Theorem 1 to the ideal . The inequality being an equality means applying Theorem 2 to the same ideal that . Hence, and so, .
- 2.
7.5. The Bound Applied to the Hermitian Curve
8. Further Reading
9. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Bras-Amorós, M. Numerical semigroups and codes. In Algebraic Geometry Modeling in Information Theory; Volume 8 of Ser. Coding Theory Cryptol.; World Science Publisher: Hackensack, NJ, USA, 2013; pp. 167–218. [Google Scholar]
- Geil, O. On codes from norm-trace curves. Finite Fields Appl. 2003, 9, 351–371. [Google Scholar] [CrossRef]
- Høholdt, T.; van Lint, J.H.; Pellikaan, R. Algebraic geometry codes. In Handbook of Coding Theory; North-Holland: Amsterdam, The Netherlands, 1998; Volumes I and II, pp. 871–961. [Google Scholar]
- Sylvester, J.J. Mathematical questions with their solutions. Educ. Times 1884, 41, 21. [Google Scholar]
- Stichtenoth, H. A note on Hermitian codes over GF(q2). IEEE Trans. Inform. Theory 1988, 34, 1345–1348. [Google Scholar] [CrossRef]
- Bras-Amorós, M.; Lee, K.; Vico-Oton, A. New lower bounds on the generalized Hamming weights of AG codes. IEEE Trans. Inform. Theory 2014, 60, 5930–5937. [Google Scholar] [CrossRef]
- Bras-Amorós, M. Acute semigroups, the order bound on the minimum distance, and the Feng-Rao improvements. IEEE Trans. Inform. Theory 2004, 50, 1282–1289. [Google Scholar] [CrossRef]
- Bras-Amorós, M. A note on numerical semigroups. IEEE Trans. Inform. Theory 2007, 53, 821–823. [Google Scholar] [CrossRef]
- Bras-Amorós, M.; O’Sullivan, M. On semigroups generated by two consecutive integers and improved Hermitian codes. IEEE Trans. Inform. Theory 2007, 53, 2560–2566. [Google Scholar] [CrossRef]
- Kirfel, C.; Pellikaan, R. The minimum distance of codes in an array coming from telescopic semigroups. IEEE Trans. Inform. Theory 1995, 41, 1720–1732. [Google Scholar] [CrossRef]
- Munuera, C.; Torres, F. A note on the order bound on the minimum distance of AG codes and acute semigroups. Adv. Math. Commun. 2008, 2, 175–181. [Google Scholar]
- Oneto, A.; Tamone, G. On numerical semigroups and the order bound. J. Pure Appl. Algebra 2008, 212, 2271–2283. [Google Scholar] [CrossRef]
- Oneto, A.; Tamone, G. On the order bound of one-point algebraic geometry codes. J. Pure Appl. Algebra 2009, 213, 1179–1191. [Google Scholar] [CrossRef]
- Oneto, A.; Tamone, G. On some invariants in numerical semigroups and estimations of the order bound. Semigroup Forum 2010, 81, 483–509. [Google Scholar] [CrossRef]
- Bras-Amorós, M. Addition behavior of a numerical semigroup. In Arithmetic, Geometry and Coding Theory (AGCT 2003); Volume 11 of Sémin. Congr.; Société Mathématique de France: Paris, France, 2005; pp. 21–28. [Google Scholar]
- Barucci, V. Decompositions of ideals into irreducible ideals in numerical semigroups. J. Commut. Algebra 2010, 2, 281–294. [Google Scholar] [CrossRef]
- Geil, O.; Munuera, C.; Ruano, D.; Torres, F. On the order bounds for one-point AG codes. Adv. Math. Commun. 2011, 5, 489–504. [Google Scholar]
- Stichtenoth, H. Algebraic Function Fields and Codes; Universitext; Springer: Berlin, Germany, 1993. [Google Scholar]
- Geer, G.V.; Howe, E.W.; Lauter, K.E.; Ritzenthaler, C. Tables of Curves with Many Points. Available online: http://www.manypoints.org (accessed on 4 November 2019).
- Lewittes, J. Places of degree one in function fields over finite fields. J. Pure Appl. Algebra 1990, 69, 177–183. [Google Scholar] [CrossRef]
- Geil, O.; Matsumoto, R. Bounding the number of -rational places in algebraic function fields using Weierstrass semigroups. J. Pure Appl. Algebra 2009, 213, 1152–1156. [Google Scholar] [CrossRef]
- Bras-Amorós, M.; Vico-Oton, A. On the Geil-Matsumoto bound and the length of AG codes. Des. Codes Cryptogr. 2014, 70, 117–125. [Google Scholar] [CrossRef]
- Beelen, P.; Ruano, D. Bounding the number of points on a curve using a generalization of Weierstrass semigroups. Des. Codes Cryptogr. 2013, 66, 221–230. [Google Scholar] [CrossRef]
- Bras-Amorós, M.; Duursma, I.; Hong, E. Isometry-dual flags of AG codes. 2019; submitted. [Google Scholar]
- Munuera, C. On the generalized Hamming weights of geometric Goppa codes. IEEE Trans. Inform. Theory 1994, 40, 2092–2099. [Google Scholar] [CrossRef]
- Munuera, C. Generalized Hamming weights and trellis complexity. In Advances in Algebraic Geometry Codes; Martinez-Moro, E., Munuera, C., Ruano, D., Eds.; World Scientific: Singapore, 2008; pp. 363–390. [Google Scholar]
- Yang, K.; Kumar, P.V.; Stichtenoth, H. On the weight hierarchy of geometric Goppa codes. IEEE Trans. Inform. Theory 1994, 40, 913–920. [Google Scholar] [CrossRef]
- Wei, V.K. Generalized Hamming weights for linear codes. IEEE Trans. Inform. Theory 1991, 37, 1412–1418. [Google Scholar] [CrossRef]
- Ozarow, L.H.; Wyner, A.D. Wire-tap channel II. In Advances in Cryptology (Paris, 1984); Volume 209 of Lecture Notes in Comput. Sci.; Springer: Berlin, Germany, 1985; pp. 33–50. [Google Scholar]
- Rouayheb, S.E.; Soljanin, E.; Sprintson, A. Secure network coding for wiretap networks of type II. IEEE Trans. Inform. Theory 2012, 58, 1361–1371. [Google Scholar] [CrossRef]
- Ngai, C.K.; Yeung, R.W.; Zhang, Z. Network generalized Hamming weight. IEEE Trans. Inform. Theory 2011, 57, 1136–1143. [Google Scholar] [CrossRef]
- Gopalan, P.; Guruswami, V.; Raghavendra, P. List decoding tensor products and interleaved codes. In Proceedings of the 2009 ACM International Symposium on Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; ACM: New York, NY, USA, 2009; pp. 13–22. [Google Scholar]
- Guruswami, V. List decoding from erasures: bounds and code constructions. IEEE Trans. Inform. Theory 2003, 49, 2826–2833. [Google Scholar] [CrossRef]
- Janwa, H.; Lal, A.K. On generalized Hamming weights and the covering radius of linear codes. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes; Volume 4851 of Lecture Notes in Comput. Sci.; Springer: Berlin, Germany, 2007; pp. 347–356. [Google Scholar]
- Cruz, R.d.; Meyer, A.; Sole, P. An extension of Massey scheme for secret sharing. In Proceedings of the Information Theory Workshop, Dublin, Ireland, 30 August–3 September 2010. [Google Scholar]
- Kurihara, J.; Uyematsu, T. Strongly-secure secret sharing based on linear codes can be characterized by generalized Hamming weight. In Proceedings of the 49th Annual Allerton Conference Communication, Control, and Computing, Monticello, IL, USA, 28–30 September 2011. [Google Scholar]
- Luo, Y.; Mitrpant, C.; Vinck, A.J.H.; Chen, K. Some new characters on the wire-tap channel of type II. IEEE Trans. Inform. Theory 2005, 51, 1222–1229. [Google Scholar] [CrossRef]
- Geil, O.; Martin, S.; Matsumoto, R.; Ruano, D.; Luo, Y. Relative generalized Hamming weights of one-point algebraic geometric codes. IEEE Trans. Inform. Theory 2014, 60, 5938–5949. [Google Scholar] [CrossRef]
- Lee, K. Bounds for generalized Hamming weights of general AG codes. Finite Fields Appl. 2015, 34, 265–279. [Google Scholar] [CrossRef]
- Heijnen, P.; Pellikaan, R. Generalized Hamming weights of q-ary Reed-Muller codes. IEEE Trans. Inform. Theory 1998, 44, 181–196. [Google Scholar] [CrossRef]
- Delgado, M.; Farrán, J.I.; García-Sánchez, P.A.; Llena, D. On the generalized Feng-Rao numbers of numerical semigroups generated by intervals. Math. Comp. 2013, 82, 1813–1836. [Google Scholar] [CrossRef]
- Delgado, M.; Farrán, J.I.; García-Sánchez, P.A.; Llena, D. On the weight hierarchy of codes coming from semigroups with two generators. IEEE Trans. Inform. Theory 2014, 60, 282–295. [Google Scholar] [CrossRef]
- Farrán, J.I.; García-Sxaxnchez, P.A.; Heredia, B.A. On the second Feng-Rao distance of algebraic geometry codes related to Arf semigroups. Des. Codes Cryptogr. 2018, 86, 2893–2916. [Google Scholar] [CrossRef]
- Farrán, J.I.; García-Sxaxnchez, P.A.; Heredia, B.A.; Leamer, M.J. The second Feng-Rao number for codes coming from telescopic semigroups. Des. Codes Cryptogr. 2018, 86, 1849–1864. [Google Scholar] [CrossRef]
- García, A.; Kim, S.J.; Lax, R.F. Consecutive Weierstrass gaps and minimum distance of Goppa codes. J. Pure Appl. Algebra 1993, 84, 199–207. [Google Scholar] [CrossRef]
- Tang, L. Consecutive Weierstrass gaps and weight hierarchy of geometric Goppa codes. Algebra Colloq. 1996, 3, 1–10. [Google Scholar]
- Feng, G.L.; Rao, T.R.N. A simple approach for construction of algebraic-geometric codes from affine plane curves. IEEE Trans. Inform. Theory 1994, 40, 1003–1012. [Google Scholar] [CrossRef]
- Campillo, A.; Farrán, J.I. Computing Weierstrass semigroups and the Feng-Rao distance from singular plane models. Finite Fields Appl. 2000, 6, 71–92. [Google Scholar] [CrossRef] [Green Version]
- Farrán, J.I.; Munuera, C. Goppa-like bounds for the generalized Feng-Rao distances. Discrete Appl. Math. 2003, 128, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Farrán, J.I.; Sánchez, P.A.G.A.; Llena, D. On the Feng-Rao numbers. In VII Jornadas de Matemática Discreta y Algorítmica; CIEM: Castro Urdiales, Spain, 7–9 July 2010. [Google Scholar]
- Barbero, A.I.; Munuera, C. The weight hierarchy of Hermitian codes. SIAM J. Discrete Math. 2000, 13, 79–104. [Google Scholar] [CrossRef]
- Assi, A.; García-Sánchez, P.A. Numerical Semigroups and Applications; Volume 1 of RSME Springer Series; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Alfonsín, J.L.R. The Diophantine Frobenius Problem; Volume 30 of Oxford Lecture Series in Mathematics and its Applications; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Rosales, J.C.; García-Sánchez, P.A. Numerical Semigroups; Volume 20 of Developments in Mathematics; Springer: New York, NY, USA, 2009. [Google Scholar]
- Pretzel, O. Codes and Algebraic Curves; Volume 8 of Oxford Lecture Series in Mathematics and its Applications; The Clarendon Press Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Van Lint, J.H.; van der Geer, G. Introduction to Coding Theory and Algebraic Geometry; Volume 12 of DMV Seminar; Birkhäuser: Basel, Switzerland, 1988. [Google Scholar]
- Munuera, C.; Olaya-León, W. An introduction to algebraic geometry codes. In Algebra for Secure and Reliable Communication Modeling; Volume 642 of Contemp. Math.; American Mathematical Society: Providence, RI, USA, 2015; pp. 87–117. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bras-Amorós, M. Ideals of Numerical Semigroups and Error-Correcting Codes. Symmetry 2019, 11, 1406. https://doi.org/10.3390/sym11111406
Bras-Amorós M. Ideals of Numerical Semigroups and Error-Correcting Codes. Symmetry. 2019; 11(11):1406. https://doi.org/10.3390/sym11111406
Chicago/Turabian StyleBras-Amorós, Maria. 2019. "Ideals of Numerical Semigroups and Error-Correcting Codes" Symmetry 11, no. 11: 1406. https://doi.org/10.3390/sym11111406
APA StyleBras-Amorós, M. (2019). Ideals of Numerical Semigroups and Error-Correcting Codes. Symmetry, 11(11), 1406. https://doi.org/10.3390/sym11111406