A Deep Learning Based Printing Defect Classification Method with Imbalanced Samples
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Overview of the Proposed Method
3.2. The Proposed Deep Model for Feature Extraction
3.3. The Deep Model Based on Deep Transfer Learning
3.4. Solutions to Imbalanced Classification Problems
4. Experimental Results and Analysis
4.1. Dataset and Evaluation Index
4.2. Comparison with Well-Known Deep Models Based on Transfer Learning
4.3. Analysis of Over-Sampling Methods
4.4. Classification Results on the Fine-Grained Dataset
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Annaby, M.H.; Fouda, Y.M.; Rushdi, M.A. Improved Normalized Cross-Correlation for Defect Detection in Printed-Circuit Boards. IEEE Trans. Semicond. Manuf. 2019, 32, 199–211. [Google Scholar] [CrossRef]
- Zapata, J.; Vilar, R.; Ruiz, R. Performance evaluation of an automatic inspection system of weld defects in radiographic images based on neuro-classifiers. Expert Syst. Appl. 2011, 38, 8812–8824. [Google Scholar] [CrossRef]
- Kang, X.; Zhang, E. A universal defect detection approach for various types of fabrics based on the Elo-rating algorithm of the integral image. Text. Res. J. 2019, 89, 4766–4793. [Google Scholar] [CrossRef]
- Zhang, E.; Chen, Y.; Gao, M.; Duan, J.; Jing, C. Automatic Defect Detection for Web Offset Printing Based on Machine Vision. Appl. Sci. 2019, 9, 3598. [Google Scholar] [CrossRef]
- Zhang, E.; Zhang, Y.; Duan, J. Color Inverse Halftoning Method with the Correlation of Multi-Color Components Based on Extreme Learning Machine. Appl. Sci. 2019, 9, 841. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, E.; Chen, W. Deep neural network for halftone image classification based on sparse auto-encoder. Eng. Appl. Artif. Intell. 2016, 50, 245–255. [Google Scholar] [CrossRef]
- Ugbeme, O.; Saber, E.; Wu, W. An automated defect classification algorithm for printed documents. In Proceedings of the Final Program and Proceedings, ICIS’06 International Congress of Imaging Science, Rochester, NY, USA, 7–11 May 2006; pp. 317–320. [Google Scholar]
- Ishimaru, I.; Hata, S.; Hirokari, M. Color-defect classification for printed-matter visual inspection system. In Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat No 02EX527) WCICA-02, Shanghai, China, 10–14 June 2002; Volume 4, pp. 3261–3265. [Google Scholar]
- Shu, W.; Liu, Q. Classification method of printing defects based on support vector machine. Packag. Eng. 2014, 35, 138–142. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 2015 International Conference on Learning Representations (ICLR 2015), SanDiego, CA, USA, 7–9 May 2015. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Hou, W.; Wei, Y.; Jin, Y.; Zhu, C. Deep features based on a DCNN model for classifying imbalanced weld flaw types. Measurement 2019, 131, 482–489. [Google Scholar] [CrossRef]
- Jian, C.; Gao, J.; Ao, Y. A new sampling method for classifying imbalanced data based on support vector machine ensemble. Neurocomputing 2016, 193, 115–122. [Google Scholar] [CrossRef]
- He, H.; Garcia, E. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–8 June 2008; pp. 1322–1328. [Google Scholar]
- Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In Proceedings of the International Conference on Intelligent Computing, Hefei, China, 23–26 August 2005; pp. 878–887. [Google Scholar]
- Li, D.C.; Chen, H.Y.; Shi, Q.S. Learning from small datasets containing nominal attributes. Neurocomputing 2018, 291, 226–236. [Google Scholar] [CrossRef]
- Cao, Q.; Wang, S. Applying Over-sampling Technique Based on Data Density and Cost-sensitive SVM to Imbalanced Learning. In Proceedings of the 2011 International Conference on Information Management, Innovation Management and Industrial Engineering, Shenzhen, China, 26–27 November 2011; Volume 2, pp. 543–548. [Google Scholar]
- Akbani, R.; Kwek, S.; Japkowicz, N. Applying Support Vector Machines to Imbalanced Datasets. In Proceedings of the 15th European Conference on Machine Learning, ECML 2004, Pisa, Italy, 20–24 September 2004; Volume 3201, pp. 39–50. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32th International Conference on Machine Learning, ICML, Lile, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A survey on deep transfer learning. In Proceedings of the 27th International Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October 2018; pp. 270–279. [Google Scholar]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Proceedings of the 28th Annual Conference on Neural Information Processing Systems 2014 (NIPS 2014), Montreal, QC, Canada, 8–13 December 2014; pp. 3320–3328. [Google Scholar]
- Douzas, G.; Bacao, F.; Last, F. Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Inf. Sci. 2018, 465, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Van der Maaten, D.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Model | Output Size of the Convolution Layer | Full Connection Layer Structure Setting |
---|---|---|
VGG16-1 | 4 × 4 × 512 | 512→4 |
VGG16-2 | 512→256→>4 | |
VGG19-1 | 4 × 4 × 512 | 512→4 |
VGG19-2 | 512→256→4 | |
Resnet50-1 | 4 × 4 × 2048 | 2048→128→4 |
Resnet50-2 | 2048→1024→4 | |
Inception_V3-1 | 2 × 2 × 2048 | 1024→4 |
Inception_V3-2 | 512→4 | |
Xception-1 | 4 × 4 × 2048 | 2048→128→4 |
Xception-2 | 2048→1024→4 |
Defect Class | LD | DD | KD | CD |
---|---|---|---|---|
number of defect image | 5165 | 4656 | 5177 | 309 |
Model | DD | KD | LD | CD | Average Accuracy |
---|---|---|---|---|---|
VGG16-1 | 96.04 | 95.70 | 98.12 | 91.67 | 95.38 |
VGG16-2 | 95.67 | 95.80 | 98.70 | 91.23 | 95.35 |
VGG19-1 | 96.05 | 95.86 | 97.91 | 90.91 | 95.18 |
VGG19-2 | 96.85 | 95.50 | 98.72 | 95.83 | 96.73 |
Resnet-1 | 94.43 | 93.26 | 95.97 | 92.76 | 94.11 |
Resnet-2 | 91.59 | 91.24 | 94.46 | 90.86 | 92.04 |
Xception-1 | 61.44 | 58.82 | 62.93 | 60.77 | 60.99 |
Xception-2 | 54.32 | 51.66 | 56.49 | 54.21 | 54.17 |
InceptionV3-1 | 98.61 | 96.51 | 97.60 | 94.44 | 96.79 |
InceptionV3-2 | 96.86 | 92.25 | 97.44 | 97.50 | 96.01 |
Proposed Deep Model | 98.10 | 99.07 | 99.00 | 91.26 | 96.86 |
Defect Class | Original Samples | ROS | ADASYN | Border-SMOTE | SMOTE | SMOTE-NC | SMOTE-ENN | SVM-SMOTE |
---|---|---|---|---|---|---|---|---|
LD | 98.10 | 95.54 | 87.35 | 86.69 | 97.72 | 90.04 | 99.13 | 92.93 |
DD | 99.07 | 94.13 | 77.22 | 94.50 | 94.87 | 94.31 | 96.61 | 96.20 |
KD | 99.00 | 98.16 | 98.76 | 99.34 | 99.17 | 99.38 | 99.58 | 99.35 |
CD | 91.26 | 99.09 | 91.38 | 94.27 | 99.35 | 98.32 | 99.78 | 96.11 |
Average Accuracy | 96.86 | 96.73 | 88.68 | 93.70 | 97.78 | 95.51 | 98.78 | 96.15 |
Class | LD | KD | CD | PP | IK | CT | PT | NP | SS | OP | TL |
---|---|---|---|---|---|---|---|---|---|---|---|
Number | 5156 | 5177 | 309 | 2301 | 2355 | 371 | 1059 | 31 | 53 | 224 | 31 |
Defect Class | Original Samples | ROS | ADASYN | Border-SMOTE | SMOTE | SMOTE-NC | SMOTE-ENN | SVM-SMOTE |
---|---|---|---|---|---|---|---|---|
LD | 98.73 | 99.78 | 99.89 | 99.72 | 99.78 | 99.78 | 99.78 | 99.72 |
KD | 99.17 | 99.38 | 99.43 | 99.43 | 99.43 | 99.43 | 99.43 | 99.43 |
CD | 71.84 | 98.94 | 95.88 | 94.90 | 98.94 | 97.89 | 98.94 | 95.88 |
PP | 90.77 | 95.55 | 96.09 | 96.09 | 95.74 | 95.64 | 95.64 | 96.09 |
IK | 82.78 | 90.91 | 90.08 | 40.00 | 90.63 | 90.78 | 90.91 | 90.11 |
CT | 91.00 | 94.12 | 93.48 | 94.81 | 94.12 | 94.12 | 94.12 | 95.52 |
PT | 85.44 | 93.83 | 92.84 | 93.09 | 93.58 | 93.58 | 93.83 | 92.84 |
NP | 63.64 | 71.43 | 100.0 | 71.43 | 90.91 | 100.0 | 76.92 | 90.91 |
SS | 15.79 | 81.25 | 81.25 | 2.41 | 81.25 | 92.86 | 72.22 | 92.86 |
OP | 72.15 | 94.81 | 92.41 | 94.74 | 91.25 | 91.14 | 92.41 | 94.74 |
TL | 27.27% | 100.0 | 90.00 | 90.00 | 90.00 | 75.00 | 90.00 | 90.00 |
Average Accurate | 72.60 | 92.73 | 93.76 | 79.69 | 93.24 | 93.66 | 91.29 | 94.37 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, E.; Li, B.; Li, P.; Chen, Y. A Deep Learning Based Printing Defect Classification Method with Imbalanced Samples. Symmetry 2019, 11, 1440. https://doi.org/10.3390/sym11121440
Zhang E, Li B, Li P, Chen Y. A Deep Learning Based Printing Defect Classification Method with Imbalanced Samples. Symmetry. 2019; 11(12):1440. https://doi.org/10.3390/sym11121440
Chicago/Turabian StyleZhang, Erhu, Bo Li, Peilin Li, and Yajun Chen. 2019. "A Deep Learning Based Printing Defect Classification Method with Imbalanced Samples" Symmetry 11, no. 12: 1440. https://doi.org/10.3390/sym11121440
APA StyleZhang, E., Li, B., Li, P., & Chen, Y. (2019). A Deep Learning Based Printing Defect Classification Method with Imbalanced Samples. Symmetry, 11(12), 1440. https://doi.org/10.3390/sym11121440