Two Variables Shivley’s Matrix Polynomials
Abstract
:1. Introduction
2. Preliminaries
3. Two Variables Shivley’s Matrix Polynomials
3.1. Generating Functions and Recurrence Relations
3.2. Summation Formulas and Operational Representation
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rainville, E.D. Special Functions; Chelsea Publishing Co.: Bronx, NY, USA; Macmillan: New York, NY, USA, 1997. [Google Scholar]
- Shively, R. On Pseudo-Laguerre Polynomials. Ph. D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1953. [Google Scholar]
- Çekim, B.; Altin, A. New matrix formulas for Laguerre matrix polynomials. J. Class. Anal. 2013, 3, 59–67. [Google Scholar] [CrossRef]
- Cortȩs, J.C.; Jo̧dar, L.; Company, R.; Villafuerte, L. Laguerre random polynomials: Definition, differential and statistical properties. Util. Math. 2015, 98, 283–293. [Google Scholar]
- Jódar, L.; Sastre, J. On the Laguerre matrix polynomials. Util. Math. 1998, 53, 37–48. [Google Scholar]
- Kargina, L.; Kurta, V. Modified Laguerre matrix polynomials. Filomat 2014, 28, 2069–2076. [Google Scholar] [CrossRef]
- Shehata, A. Some relations on Laguerre matrix polynomials. Malays. J. Math. Sci. 2015, 9, 443–462. [Google Scholar]
- Abdalla, M. Special matrix functions: Characteristics, achievements and future directions. Linear Multilinear Algebra 2018. [Google Scholar] [CrossRef]
- Khan, S.; Hassan, N.A.M. 2-variables Laguerre matrix polynomials and Lie-algebraic techniques. J. Phys. A 2010, 43, 235204. [Google Scholar] [CrossRef]
- Yasmin, G.; Khan, S. Hermite matrix based polynomials of two variables and lie algebraic techniques. Southeast Asian Bull. Math. 2014, 38, 603–618. [Google Scholar]
- Aktaş, R.; Çekim, B.; Şahin, R. The matrix version for the multivariable Humbert polynomials. Miskolc Math. Notes 2012, 13, 197–208. [Google Scholar] [CrossRef]
- Bin-Saad, M.G. A note on two variable Laguerre matrix polynomials. J. Associ. Arab Univ. Basic Appl. Sci. 2017, 24, 271–276. [Google Scholar] [CrossRef]
- Bin-Saad, M.G.; Pathan, M.A. Pseudo laguerre matrix polynomials, operational identities and quasi-monomiality. Adv. Linear Algebra Matrix Theory 2018, 8, 87–95. [Google Scholar] [CrossRef]
- Çekim, B. q-Matrix polynomials in several variables. Filomat 2015, 29, 2059–2067. [Google Scholar] [CrossRef]
- Kahmmash, G.S. A study of a two variables Gegenbauer matrix polynomials and second order matrix partial differential equations. Int. J. Math. Anal. 2008, 2, 807–821. [Google Scholar]
- Khammash, G.S. On Hermite matrix polynomials of two variables. J. Appl. Sci. 2008, 8, 1221–1227. [Google Scholar]
- Singh, V.; Khan, M.; Khan, A. On a multivariable extension of Laguerre matrix ploynomials. Electron. J. Math. Anal. Appl. 2018, 6, 223–240. [Google Scholar]
- Abul-Dahab, M.A.; Abul-Ez, M.; Kishka, Z.; Constales, D. Reverse generalized Bessel matrix differential equation, polynomial solutions, and their properties. Math. Methods Appl. Sci. 2015, 38, 1005–1013. [Google Scholar] [CrossRef]
- Cortȩs, J.C.; Jo̧dar, L.; Sols, F.J.; Ku Carrillo, R. Infinite matrix products and the representation of the gamma matrix function. Abstr. Appl. Anal. 2015, 2015, 564287. [Google Scholar] [CrossRef]
- Jódar, L.; Cortés, J.C. On the hypergeometric matrix function. J. Comput. Appl. Math. 1998, 99, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, M.; Abd-Elmageed, H.; Abul-Ez, M.; Kishka, Z. Operational formulae of the multivariable hypergeometric matrix functions and related matrix polynomials. Gen. Lett. Math. 2017, 3, 81–90. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, A.H.; Ahmad, N. A note on Hermite polynomials of several variables. Appl. Math. Comput. 2012, 218, 6385–6390. [Google Scholar]
- Bakhet, A.; Jiao, Y.; He, F.L. On the Wright hypergeometric matrix functions and their fractional calculus. Integral Transform. Spec. Funct. 2019, 30, 138–156. [Google Scholar] [CrossRef]
- Defez, E.; Jódar, L. Some applications of the Hermite matrix polynomials series expansions. J. Comput. Appl. Math. 1998, 99, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, M.; Bakhet, A. Extended Gauss hypergeometric matrix functions. Iran. J. Sci. Technol. Trans. Sci. 2018, 42, 1465–1470. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, F.; Bakhet, A.; Hidan, M.; Abdalla, M. Two Variables Shivley’s Matrix Polynomials. Symmetry 2019, 11, 151. https://doi.org/10.3390/sym11020151
He F, Bakhet A, Hidan M, Abdalla M. Two Variables Shivley’s Matrix Polynomials. Symmetry. 2019; 11(2):151. https://doi.org/10.3390/sym11020151
Chicago/Turabian StyleHe, Fuli, Ahmed Bakhet, M. Hidan, and M. Abdalla. 2019. "Two Variables Shivley’s Matrix Polynomials" Symmetry 11, no. 2: 151. https://doi.org/10.3390/sym11020151
APA StyleHe, F., Bakhet, A., Hidan, M., & Abdalla, M. (2019). Two Variables Shivley’s Matrix Polynomials. Symmetry, 11(2), 151. https://doi.org/10.3390/sym11020151