Some New q-Congruences for Truncated Basic Hypergeometric Series
Abstract
:1. Introduction
2. Proof of Theorem 1
3. Proof of Theorem 2
4. Proof of Theorem 3
5. Proof of Theorem 4
6. More Congruences Modulo
7. Concluding Remarks and Open Problems
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramanujan, S. Modular equations and approximations to π. Quart. J. Math. Oxford Ser. 1914, 45, 350–372. [Google Scholar]
- Van Hamme, L. Some conjectures concerning partial sums of generalized hypergeometric series. Lect. Notes Pure Appl. Math. 1997, 192, 223–236. [Google Scholar]
- Swisher, H. On the supercongruence conjectures of van Hamme. Res. Math. Sci. 2015, 2, 18. [Google Scholar] [CrossRef]
- Osburn, R.; Zudilin, W. On the (K.2) supercongruence of Van Hamme. J. Math. Anal. Appl. 2016, 433, 706–711. [Google Scholar] [CrossRef] [Green Version]
- Zudilin, W. Ramanujan-type supercongruences. J. Number Theory 2009, 129, 8–1848. [Google Scholar] [CrossRef]
- Guo, V.J.W.; Jouhet, F.; Zeng, J. Factors of alternating sums of products of binomial and q-binomial coefficients. Acta Arith. 2007, 127, 17–31. [Google Scholar] [CrossRef]
- Tauraso, R. q-Analogs of some congruences involving Catalan numbers. Adv. Appl. Math. 2009, 48, 603–614. [Google Scholar] [CrossRef]
- Pan, H.; Sun, Z.-W. Some q-congruences related to 3-adic valuations. Adv. Appl. Math. 2012, 49, 263–270. [Google Scholar] [CrossRef]
- Tauraso, R. Some q-analogs of congruences for central binomial sums. Colloq. Math. 2013, 133, 133–143. [Google Scholar] [CrossRef]
- Guo, V.J.W.; Zeng, J. Some q-analogues of supercongruences of Rodriguez-Villegas. J. Number Theory 2014, 145, 301–316. [Google Scholar] [CrossRef]
- Guo, V.J.W.; Pan, H.; Zhang, Y. The Rodriguez-Villegas type congruences for truncated q-hypergeometric functions. J. Number Theory 2017, 174, 358–368. [Google Scholar] [CrossRef]
- Guillera, J. WZ pairs and q-analogues of Ramanujan series for 1/π. J. Diff. Equ. Appl. 2018, 24, 1871–1879. [Google Scholar] [CrossRef]
- Guo, V.J.W. A q-analogue of a Ramanujan-type supercongruence involving central binomial coefficients. J. Math. Anal. Appl. 2018, 458, 590–600. [Google Scholar] [CrossRef]
- Guo, V.J.W. A q-analogue of the (I.2) supercongruence of Van Hamme. Int. J. Number Theory 2019, 15, 29–36. [Google Scholar] [CrossRef]
- Guo, V.J.W. Proof of a q-congruence conjectured by Tauraso. Int. J. Number Theory 2019, 15, 37–41. [Google Scholar] [CrossRef]
- Ni, H.-X.; Pan, H. On a conjectured q-congruence of Guo and Zeng. Int. J. Number Theory 2018, 14, 1699–1707. [Google Scholar] [CrossRef]
- Guo, V.J.W.; Wang, S.-D. Factors of sums and alternating sums of products of q-binomial coefficients and powers of q-integers. Taiwan. J. Math. 2019, 23, 11–27. [Google Scholar] [CrossRef]
- Straub, A. Supercongruences for polynomial analogs of the Apéry numbers. Proc. Amer. Math. Soc. 2019, 147, 1023–1036. [Google Scholar] [CrossRef]
- Guo, V.J.W. q-Analogues of the (E.2) and (F.2) supercongruences of Van Hamme. Ramanujan J. 2018. [Google Scholar] [CrossRef]
- Guo, V.J.W. A q-analogue of a curious supercongruence of Guillera and Zudilin. J. Diff. Equ. Appl. 2019. [Google Scholar] [CrossRef]
- Guo, V.J.W. Some q-congruences with parameters. Acta Arith. 2018, arXiv:1804.10963. [Google Scholar]
- Guo, V.J.W.; Zudilin, W. A q-microscope for supercongruences. Adv. Math. 2019, 346, 329–358. [Google Scholar] [CrossRef]
- Gorodetsky, O. q-Congruences, with applications to supercongruences and the cyclic sieving phenomenon. arXiv, 2018; arXiv:1805.01254v1. [Google Scholar]
- Guo, V.J.W.; Schlosser, M.J. Some q-supercongruences from transformation formulas for basic hypergeometric series. arXiv, 2018; arXiv:1812.06324. [Google Scholar]
- Guo, V.J.W.; Schlosser, M.J. Proof of a basic hypergeometric supercongruence modulo the fifth power of a cyclotomic polynomial. arXiv, 2018; arXiv:1812.11659. [Google Scholar]
- Guo, V.J.W.; Zudilin, W. On a q-deformation of modular forms. arXiv, 2018; arXiv:1812.11322. [Google Scholar]
- Zudilin, W. Congruences for q-binomial coefficients. arXiv, 2019; arXiv:1901.07843. [Google Scholar]
- Guo, V.J.W. Factors of some truncated basic hypergeometric series. arXiv, 2019; arXiv:1901.07908. [Google Scholar]
- Zagier, D. Quantum modular forms. Clay Math. Proc. 2010, 11, 659–675. [Google Scholar]
- Folsom, A.; Ono, K.; Rhoades, R.C. Mock theta functions and quantum modular forms. Forum Math. Pi 2013, 1, e2. [Google Scholar] [CrossRef]
- Lang, S. Algebra. In Graduate Texts in Mathematics, 211, 3rd ed.; Axler, S., Gehring, F.W., Ribet, K.A., Eds.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Andrews, G.E. Problems and Prospects for Basic Hypergeometric Functions. In Theory and Application for Basic Hypergeometric Functions, Proceedings of an Advanced Seminar Sponsored by the Mathematics Research Center, the University of Wisconsin–Madison, Madison, WI, USA, 31 March–2 April 1975; Publ. No. 35; Askey, R.A., Ed.; Academic Press: New York, NY, USA, 1975; pp. 191–224. [Google Scholar]
- Calkin, N.J. Factors of sums of powers of binomial coefficients. Acta Arith. 1998, 86, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Andrews, G.E. The Theory of Partitions; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Fürlinger, J.; Hofbauer, J. q-Catalan numbers. J. Combin. Theory Ser. A 1985, 2, 248–264. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, V.J.W.; Schlosser, M.J. Some New q-Congruences for Truncated Basic Hypergeometric Series. Symmetry 2019, 11, 268. https://doi.org/10.3390/sym11020268
Guo VJW, Schlosser MJ. Some New q-Congruences for Truncated Basic Hypergeometric Series. Symmetry. 2019; 11(2):268. https://doi.org/10.3390/sym11020268
Chicago/Turabian StyleGuo, Victor J. W., and Michael J. Schlosser. 2019. "Some New q-Congruences for Truncated Basic Hypergeometric Series" Symmetry 11, no. 2: 268. https://doi.org/10.3390/sym11020268
APA StyleGuo, V. J. W., & Schlosser, M. J. (2019). Some New q-Congruences for Truncated Basic Hypergeometric Series. Symmetry, 11(2), 268. https://doi.org/10.3390/sym11020268