Boosting Memory-Based Collaborative Filtering Using Content-Metadata
Abstract
:1. Introduction
2. Background
2.1. Related Works
2.2. Using Content-Metadata for CF
2.2.1. Content-Metadata TF-IDF Vector
2.2.2. Content Link Network
3. Metadata-Based Boosting Approaches
3.1. Motivation
3.2. Content and Metadata-Based CF
3.3. Combined Harmonic Approach
3.4. Priority-Based Harmonic Approach
3.5. Content Link Network-Based CF
3.6. Combining MoleTrust with CNCF
3.7. Combining MoleTrust with CNCF and CMCF
3.8. Generalized MTCC
3.9. Combining CNCF with CHA
3.10. Combining CNCF with PHA
4. Experiment
4.1. Experimental Configuration
4.1.1. Precision
4.1.2. Coverage
4.1.3. F-Measure
4.2. Experimental Results
4.2.1. Overall Performance
4.2.2. Performance over Size of Rating Data
4.2.3. Comparison with Model-Based Recommendation Methods
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schafer, J.B.; Frankowski, D.; Herlocker, J.; Sen, S. Collaborative filtering recommender systems. In The Adaptive Web; Springer: Berlin/Heidelberg, Germany, 2007; pp. 291–324. [Google Scholar]
- Lü, L.; Medo, M.; Yeung, C.H.; Zhang, Y.-C.; Zhang, Z.-K.; Zhou, T. Recommender systems. Phys. Rep. 2012, 519, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Sharma, A. Alleviating sparsity and scalability issues in collaborative filtering based recommender systems. In Proceedings of Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA); Springer: Berlin/Heidelberg, Germany, 2013; pp. 103–112. [Google Scholar]
- Wei, S.; Ye, N.; Zhang, S.; Huang, X.; Zhu, J. Collaborative filtering recommendation algorithm based on item clustering and global similarity. In Proceedings of the 2012 Fifth International Conference on Business Intelligence and Financial Engineering (BIFE), Lanzhou, China, 18–21 August 2012; pp. 69–72. [Google Scholar]
- Gong, S. A collaborative filtering recommendation algorithm based on user clustering and item clustering. JSW 2010, 5, 745–752. [Google Scholar] [CrossRef]
- Revankar, O.S.; Haribhakta, Y. Survey on collaborative filtering technique in recommendation system. Int. J. Appl. Innov. Eng. Manag. 2015, 4, 85–91. Available online: https://www.ijaiem.org/Volume4Issue3/IJAIEM-2015-03-13-34.pdf (accessed on 3 March 2019).
- Pazzani, M.J.; Billsus, D. Content-based recommendation systems. In The Adaptive Web; Springer: Berlin/Heidelberg, Germany, 2007; pp. 325–341. [Google Scholar]
- Bogers, T.; Koolen, M.; Cantador, I. Report on RecSys 2014: Workshop on New Trends in Content-Based Recommender Systems. ACM SIGIR Forum 2015, 49, 20–26. [Google Scholar] [CrossRef]
- Bogers, T.; Koolen, M. Report on RecSys 2015 Workshop on New Trends in Content-Based Recommender Systems. SIGIR Forum 2015, 49, 141–146. [Google Scholar] [CrossRef]
- Seo, E.; Kang, D.; Choi, H.-J. Metadata-Based Collaborative Filtering Using K-Partite Graph for Movie Recommendation. In Proceedings of the Fourth International Conference on Emerging Databases-Technologies, Applications, and Theory (EDB), Seoul, Korea, 23–25 August 2012; pp. 54–61. [Google Scholar]
- Mittal, P.; Jain, A.; Majumdar, A. Metadata based recommender systems. In Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Delhi, India, 24–27 September 2014; pp. 2659–2664. [Google Scholar]
- Zhao, Z.-D.; Shang, M.-S. User-based collaborative-filtering recommendation algorithms on hadoop. In Proceedings of the 2010. WKDD’10. Third International Conference on Knowledge Discovery and Data Mining, Phuket, Thailand, 9–10 January 2010; pp. 478–481. [Google Scholar]
- Wang, J.; De Vries, A.P.; Reinders, M.J. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Washington, DC, USA, 6–11 August 2006; pp. 501–508. [Google Scholar]
- Deshpande, M.; Karypis, G. Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst. (TOIS) 2004, 22, 143–177. [Google Scholar] [CrossRef]
- Massa, P.; Avesani, P. Trust metrics on controversial users: Balancing between tyranny of the majority. Int. J. Semant. Web Inf. Syst. (IJSWIS) 2007, 3, 39–64. [Google Scholar] [CrossRef]
- Jamali, M.; Ester, M. Trustwalker: a random walk model for combining trust-based and item-based recommendation. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 397–406. [Google Scholar]
- Massa, P.; Avesani, P. Trust-aware recommender systems. In Proceedings of the 2007 ACM Conference on Recommender Systems, Minneapolis, MN, USA, 19–20 October 2007; pp. 17–24. [Google Scholar]
- Hwang, S.-Y.; Chen, L.-S. Using trust for collaborative filtering in eCommerce. In Proceedings of the 11th International Conference on Electronic Commerce, Taipei, China, 12–15 August 2009; pp. 240–248. [Google Scholar]
- Cui, L.; Sun, L.; Fu, X.; Lu, N.; Zhang, G. Exploring a trust based recommendation approach for videos in online social network. J. Signal Process. Syst. 2017, 86, 207–219. [Google Scholar] [CrossRef]
- Jamali, M.; Ester, M. A matrix factorization technique with trust propagation for recommendation in social networks. In Proceedings of the Fourth ACM Conference on Recommender Systems, Barcelona, Spain, 26–30 September 2010; pp. 135–142. [Google Scholar]
- Melville, P.; Mooney, R.J.; Nagarajan, R. Content-boosted collaborative filtering for improved recommendations. AAAI Proc. 2002, 23, 187–192. [Google Scholar]
- Burke, R. Hybrid web recommender systems. In The Adaptive Web; Springer: Berlin/Heidelberg, Germany, 2007; pp. 377–408. [Google Scholar]
- Lekakos, G.; Caravelas, P. A hybrid approach for movie recommendation. Multimed. Tools Appl. 2008, 36, 55–70. [Google Scholar] [CrossRef]
- Wang, C.; Blei, D.M. Collaborative topic modeling for recommending scientific articles. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011; pp. 448–456. [Google Scholar]
- Salakhutdinov, R.; Mnih, A. Probabilistic Matrix Factorization. In Proceedings of the 20th International Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 3–6 December 2007; pp. 1257–1264. [Google Scholar]
- Salakhutdinov, R.; Mnih, A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 880–887. [Google Scholar]
- Liu, J.; Wu, C.; Liu, W. Bayesian probabilistic matrix factorization with social relations and item contents for recommendation. Decis. Support Syst. 2013, 55, 838–850. [Google Scholar] [CrossRef]
- Koren, Y.; Bell, R. Advances in collaborative filtering. In Recommender Systems Handbook; Springer: Berlin/Heidelberg, Germany, 2015; pp. 77–118. [Google Scholar]
- He, X.; Zhang, H.; Kan, M.-Y.; Chua, T.-S. Fast Matrix Factorization for Online Recommendation with Implicit Feedback. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, Pisa, Italy, 17–21 July 2016; pp. 549–558. [Google Scholar]
- Pang, N.; Lai, Z. Signature word extracting research based on web metadata. In Proceedings of the 2012 International Symposium on Instrumentation & Measurement, Sensor Network and Automation (IMSNA), Sanya, China, 25–28 August 2012; pp. 506–508. [Google Scholar]
- Soares, M.; Viana, P. Tuning metadata for better movie content-based recommendation systems. Multimed. Tools Appl. 2015, 74, 7015–7036. [Google Scholar] [CrossRef]
- Deldjoo, Y.; Elahi, M.; Cremonesi, P.; Garzotto, F.; Piazzolla, P.; Quadrana, M. Content-Based Video Recommendation System Based on Stylistic Visual Features. J. Data Semant. 2016, 5, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.S. Tree pattern expression for extracting information from syntactically parsed text corpora. Data Min. Knowl. Discov. 2011, 22, 211–231. [Google Scholar] [CrossRef]
- Choi, Y.S. TPEMatcher: A tool for searching in parsed text corpora. Knowl.-Based Syst. 2011, 24, 1139–1150. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.; Choi, Y.S. TPE Based Tuple Extraction Method for Question and Answering System. In Proceedings of the 2014 International Conference on Information Science & Applications (ICISA), Seoul, Korea, 6–9 May 2014; pp. 1–4. [Google Scholar]
- Resnick, P.; Varian, H.R. Recommender systems. Commun. ACM 1997, 40, 56–58. [Google Scholar] [CrossRef]
- Ekstrand, M.D.; Riedl, J.T.; Konstan, J.A. Collaborative Filtering Recommender Systems. Found. Trends Hum. Comput. Int. 2011, 4, 81–173. [Google Scholar] [CrossRef]
Methods | Size of Rating Data | |||
---|---|---|---|---|
20% | 40% | 60% | 80% | |
PMF | 0.6756 | 0.6730 | 0.6766 | 0.6851 |
BPMF | 0.6927 | 0.7103 | 0.7264 | 0.7355 |
BPMFSRIC | 0.7149 | 0.7311 | 0.7381 | 0.7420 |
MTCC | 0.7214 | 0.7322 | 0.7384 | 0.7441 |
GMTCC | 0.7191 | 0.7318 | 0.7379 | 0.7420 |
CNCHA | 0.7182 | 0.7294 | 0.7363 | 0.7421 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.S.; Chang, D.S.; Choi, Y.S. Boosting Memory-Based Collaborative Filtering Using Content-Metadata. Symmetry 2019, 11, 561. https://doi.org/10.3390/sym11040561
Kim KS, Chang DS, Choi YS. Boosting Memory-Based Collaborative Filtering Using Content-Metadata. Symmetry. 2019; 11(4):561. https://doi.org/10.3390/sym11040561
Chicago/Turabian StyleKim, Kyung Soo, Doo Soo Chang, and Yong Suk Choi. 2019. "Boosting Memory-Based Collaborative Filtering Using Content-Metadata" Symmetry 11, no. 4: 561. https://doi.org/10.3390/sym11040561
APA StyleKim, K. S., Chang, D. S., & Choi, Y. S. (2019). Boosting Memory-Based Collaborative Filtering Using Content-Metadata. Symmetry, 11(4), 561. https://doi.org/10.3390/sym11040561