The Lanczos Equation on Light-Like Hypersurfaces in a Cosmologically Viable Class of Kinetic Gravity Braiding Theories
Abstract
:1. Introduction
2. Equations of Motion
3. Junction Conditions
3.1. The Extrinsic Formulation
3.2. The Intrinsic Formulation
3.3. Gauge Fixing
4. Discussion of the Junction Conditions
5. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- LIGO Scientific Collaboration and Virgo Collaboration. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [Green Version]
- LIGO Scientific Collaboration and Virgo Collaboration. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar] [CrossRef] [Green Version]
- LIGO Scientific Collaboration and Virgo Collaboration. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LIGO Scientific Collaboration and Virgo Collaboration. GW170608: Observation of a 19-Solar-Mass Binary Black Hole Coalescence. Astrophys. J. Lett. 2017, 851, L35. [Google Scholar] [CrossRef]
- LIGO Scientific Collaboration and Virgo Collaboration. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett. 2017, 119, 141101. [Google Scholar] [CrossRef] [Green Version]
- LIGO Scientific Collaboration and Virgo Collaboration. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LIGO Scientific Collaboration and Virgo Collaboration. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. arXiv 2018, arXiv:1811.12907. [Google Scholar]
- Horndeski, G.W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 1974, 10, 363–384. [Google Scholar] [CrossRef]
- Deffayet, C.; Gao, X.; Steer, D.A.; Zahariade, G. From k-essence to generalized Galileons. Phys. Rev. D 2011, 84, 064039. [Google Scholar] [CrossRef]
- Baker, T.; Bellini, E.; Ferreira, P.G.; Lagos, M.; Noller, J.; Sawicki, I. Strong constraints on cosmological gravity from GW170817 and GRB 170817A. Phys. Rev. Lett. 2017, 119, 251301. [Google Scholar] [CrossRef]
- Ezquiaga, J.M.; Zumalacárregui, M. Dark Energy after GW170817: Dead ends and the road ahead. Phys. Rev. Lett. 2017, 119, 251304. [Google Scholar] [CrossRef] [PubMed]
- Creminelli, P.; Vernizzi, F. Dark Energy after GW170817 and GRB170817A. Phys. Rev. Lett. 2017, 119, 251302. [Google Scholar] [CrossRef] [PubMed]
- Sakstein, J.; Jain, B. Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories. Phys. Rev. Lett. 2017, 119, 251303. [Google Scholar] [CrossRef] [PubMed]
- Kase, R.; Tsujikawa, S. Dark energy in Horndeski theories after GW170817: A review. arXiv 2019, arXiv:1809.08735. [Google Scholar] [CrossRef]
- Deffayet, C.; Pujolas, O.; Sawicki, I.; Vikman, A. Imperfect Dark Energy from Kinetic Gravity Braiding. arXiv 2010, arXiv:1008.0048. [Google Scholar] [CrossRef]
- Kase, R.; Tsujikawa, S.; Felice, A.D. Cosmology with a successful Vainshtein screening in theories beyond Horndeski. Phys. Rev. D 2016, 93, 024007. [Google Scholar] [CrossRef] [Green Version]
- Heisenberg, L.; Bartelmann, M.; Brandenberger, R.; Refregier, A. Horndeski in the Swampland. arXiv 2019, arXiv:1902.03939. [Google Scholar]
- Israel, W. Singular hypersurfaces and thin shells in general relativity. Nouvo Cim. B 1966, 44, 1–14. [Google Scholar] [CrossRef]
- Barrabés, C.; Israel, W. Thin shells in general relativity and cosmology: The lightlike limit. Phys. Rev. D 1991, 43, 1129–1142. [Google Scholar] [CrossRef]
- Poisson, E. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Shiromizu, T.; Maeda, K.I.; Sasaki, M. The Einstein equations on the 3-brane world. Phys. Rev. D 2000, 62, 024012. [Google Scholar] [CrossRef]
- Gergely, L.Á. Generalized Friedmann branes. Phys. Rev. D 2003, 68, 124011. [Google Scholar] [CrossRef]
- Gergely, L.Á. Friedmann branes with variable tension. Phys. Rev. D 2008, 78, 084006. [Google Scholar] [CrossRef]
- Padilla, A.; Sivanesan, V. Boundary Terms and Junction Conditions for Generalized Scalar-Tensor Theories. arXiv 2012, arXiv:1206.1258. [Google Scholar] [CrossRef]
- Nishi, S.; Kobayashi, T.; Tanahashi, N.; Yamaguchi, M. Cosmological matching conditions and galilean genesis in Horndeski’s theory. arXiv 2014, arXiv:1401.1045. [Google Scholar] [CrossRef]
- Racskó, B.; Gergely, L.Á. Light-Like Shockwaves in Scalar-Tensor Theories. Universe 2018, 4, 44. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Racskó, B.; Gergely, L.Á. The Lanczos Equation on Light-Like Hypersurfaces in a Cosmologically Viable Class of Kinetic Gravity Braiding Theories. Symmetry 2019, 11, 616. https://doi.org/10.3390/sym11050616
Racskó B, Gergely LÁ. The Lanczos Equation on Light-Like Hypersurfaces in a Cosmologically Viable Class of Kinetic Gravity Braiding Theories. Symmetry. 2019; 11(5):616. https://doi.org/10.3390/sym11050616
Chicago/Turabian StyleRacskó, Bence, and László Á. Gergely. 2019. "The Lanczos Equation on Light-Like Hypersurfaces in a Cosmologically Viable Class of Kinetic Gravity Braiding Theories" Symmetry 11, no. 5: 616. https://doi.org/10.3390/sym11050616
APA StyleRacskó, B., & Gergely, L. Á. (2019). The Lanczos Equation on Light-Like Hypersurfaces in a Cosmologically Viable Class of Kinetic Gravity Braiding Theories. Symmetry, 11(5), 616. https://doi.org/10.3390/sym11050616