Non-Coercive Radially Symmetric Variational Problems: Existence, Symmetry and Convexity of Minimizers
Abstract
:1. Introduction
2. Notation and Preliminaries
3. Symmetry of Minimizers
4. Existence of Minimizers and Euler–Lagrange Inclusions
- (g1r)
- g is a normal integrand, the function is convex for a.e. , and .
- (g2r)
- There exists a function such that
- (h1r)
- h is a Borel function, , and there exists such that
- (hgr)
- The functions g and h are related by the condition
- (i)
- F admits a radially symmetric minimizer in , and admits a minimizer in .
- (ii)
- Every minimizer of is Lipschitz continuous.
- (iii)
- For every minimizer of there exists such that the following Euler–Lagrange inclusions hold:
- (i)
- If h satisfies (h1r) and satisfies (9), then for every , where is the (finite) quantity defined in (hgr).
- (ii)
5. Convex Solutions of Variational Problems with Gradient Constraints
- (g1)
- is a convex function;
- (g2)
- ;
- (h1)
- h is a convex function;
- (hg)
- .
- (i)
- F admits a radially symmetric minimizer in .
- (ii)
- There exists a momentum such that the following Euler–Lagrange inclusions hold:
- (iii)
- If [resp. ], then u is a convex [resp. concave] function.
- (iv)
- If, in addition, g has a strict minimum point at 0, or h is a strictly monotone function, then every minimizer of F in is radially symmetric.
- (g0)
- g is a lower semicontinuous proper function, such that ;
- (g2)
- .
Author Contributions
Funding
Conflicts of Interest
References
- Krömer, S. Existence and symmetry of minimizers for nonconvex radially symmetric variational problems. Calc. Var. Partial Differ. Equ. 2008, 32, 219–236. [Google Scholar] [CrossRef]
- Cellina, A. The classical problem of the calculus of variations in the autonomous case: Relaxation and Lipschitzianity of solutions. Trans. Am. Math. Soc. 2004, 356, 415–426. [Google Scholar] [CrossRef]
- Cellina, A.; Treu, G.; Zagatti, S. On the minimum problem for a class of non-coercive functionals. J. Differ. Equ. 1996, 127, 225–262. [Google Scholar] [CrossRef]
- Clarke, F.H. An indirect method in the calculus of variations. Trans. Am. Math. Soc. 1993, 336, 655–673. [Google Scholar] [CrossRef]
- Clarke, F.H.; Loewen, P.D. An intermediate existence theory in the calculus of variations. Annali della Scuola Normale Superiore di Pisa Classe di Scienze 1989, 16, 487–526. [Google Scholar]
- Crasta, G. An existence result for noncoercive nonconvex problems in the calculus of variations. Nonlinear Anal. 1996, 26, 1527–1533. [Google Scholar] [CrossRef]
- Crasta, G. Existence of minimizers for nonconvex variational problems with slow growth. J. Optim. Theory Appl. 1998, 99, 381–401. [Google Scholar] [CrossRef]
- Crasta, G. On the minimum problem for a class of noncoercive nonconvex functionals. SIAM J. Control Optim. 1999, 38, 237–253. [Google Scholar] [CrossRef]
- Crasta, G. Existence, uniqueness and qualitative properties of minima to radially symmetric non-coercive non-convex variational problems. Math. Z. 2000, 235, 569–589. [Google Scholar] [CrossRef]
- Crasta, G.; Malusa, A. Existence results for noncoercive variational problems. SIAM J. Control Optim. 1996, 34, 2064–2076. [Google Scholar] [CrossRef]
- Crasta, G.; Malusa, A. Euler-Lagrange inclusions and existence of minimizers for a class of non-coercive variational problems. J. Convex Anal. 2000, 7, 167–181. [Google Scholar]
- Crasta, G.; Malusa, A. Nonconvex minimization problems for functionals defined on vector valued functions. J. Math. Anal. Appl. 2001, 254, 538–557. [Google Scholar] [CrossRef]
- Rockafellar, R.T. Existence and duality theorems for convex problems of Bolza. Trans. Am. Math. Soc. 1971, 159, 1–40. [Google Scholar] [CrossRef]
- Giusti, E. Direct Methods in the Calculus of Variations; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 2003; ISBN 981-238-043-4. [Google Scholar]
- Carlson, D.A. Minimizers for nonconvex variational problems in the plane via convex/concave rearrangements. J. Math. Anal. Appl. 2017, 451, 175–196. [Google Scholar] [CrossRef]
- Greco, A. Minimization of non-coercive integrals by means of convex rearrangement. Adv. Calc. Var. 2012, 5, 231–249. [Google Scholar] [CrossRef]
- Crasta, G. Variational problems for a class of functionals on convex domains. J. Differ. Equ. 2002, 178, 608–629. [Google Scholar] [CrossRef]
- Crasta, G. Estimates for the energy of the solutions to elliptic Dirichlet problems on convex domains. Proc. R. Soc. Edinb. Sect. A 2004, 134, 89–107. [Google Scholar] [CrossRef]
- Crasta, G. A symmetry problem in the calculus of variations. J. Eur. Math. Soc. (JEMS) 2006, 8, 139–154. [Google Scholar] [CrossRef]
- Crasta, G.; Fragalà, I.; Gazzola, F. A sharp upper bound for the torsional rigidity of rods by means of web functions. Arch. Ration. Mech. Anal. 2002, 164, 189–211. [Google Scholar] [CrossRef]
- Crasta, G.; Fragalà, I.; Gazzola, F. On a long-standing conjecture by Pólya-Szegö and related topics. Z. Angew. Math. Phys. 2005, 56, 763–782. [Google Scholar] [CrossRef]
- Crasta, G.; Fragalà, I.; Gazzola, F. On the role of energy convexity in the web function approximation. NoDEA Nonlinear Differ. Equ. Appl. 2005, 12, 93–109. [Google Scholar] [CrossRef]
- Crasta, G.; Fragalà, I.; Gazzola, F. Some estimates for the torsional rigidity of composite rods. Math. Nachr. 2007, 280, 242–255. [Google Scholar] [CrossRef]
- Crasta, G.; Gazzola, F. Web functions: Survey of results and perspectives. Rendiconti dell’Istituto di Matematica dell’Università di Trieste 2001, 33, 313–326. [Google Scholar]
- Crasta, G.; Gazzola, F. Some estimates of the minimizing properties of web functions. Calc. Var. Partial Differ. Equ. 2002, 15, 45–66. [Google Scholar] [CrossRef]
- Crasta, G.; Malusa, A. Geometric constraints on the domain for a class of minimum problems. ESAIM Control Optim. Calc. Var. 2003, 9, 125–133. [Google Scholar] [CrossRef]
- Crasta, G.; Malusa, A. On the existence and uniqueness of minimizers for a class of integral functionals. NoDEA Nonlinear Differ. Equ. Appl. 2005, 12, 129–150. [Google Scholar] [CrossRef]
- Crasta, G.; Malusa, A. A sharp uniqueness result for a class of variational problems solved by a distance function. J. Differ. Equ. 2007, 243, 427–447. [Google Scholar] [CrossRef]
- Clarke, F.H. Optimization and Nonsmooth Analysis; Canadian Mathematical Society Series in Mathematics; John Wiley and Sons: Toronto, ON, Canada, 1983. [Google Scholar]
- Ekeland, I.; Témam, R. Convex Analysis and Variational Problems; Classics in Applied Mathematics; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 1999; p. 28. ISBN 0-89871-450-8. [Google Scholar]
- Cesari, L. Optimization—Theory And Applications; Applications of Mathematics (New York); Springer: New York, NY, USA, 1983; p. 17. ISBN 0-387-90676-2. [Google Scholar]
- Cellina, A.; Perrotta, S. On minima of radially symmetric functionals of the gradient. Nonlinear Anal. 1994, 23, 239–249. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crasta, G.; Malusa, A. Non-Coercive Radially Symmetric Variational Problems: Existence, Symmetry and Convexity of Minimizers. Symmetry 2019, 11, 688. https://doi.org/10.3390/sym11050688
Crasta G, Malusa A. Non-Coercive Radially Symmetric Variational Problems: Existence, Symmetry and Convexity of Minimizers. Symmetry. 2019; 11(5):688. https://doi.org/10.3390/sym11050688
Chicago/Turabian StyleCrasta, Graziano, and Annalisa Malusa. 2019. "Non-Coercive Radially Symmetric Variational Problems: Existence, Symmetry and Convexity of Minimizers" Symmetry 11, no. 5: 688. https://doi.org/10.3390/sym11050688
APA StyleCrasta, G., & Malusa, A. (2019). Non-Coercive Radially Symmetric Variational Problems: Existence, Symmetry and Convexity of Minimizers. Symmetry, 11(5), 688. https://doi.org/10.3390/sym11050688