New Symmetric Differential and Integral Operators Defined in the Complex Domain
Abstract
:1. Introduction
2. Preparatory
3. Formulas of Symmetric Operators
- [8] (Lupas operator)
- ;
4. Geometric Results
- ϕ achieves the subordination inequality
- f satisfies the inequality
- ϕ admits the inequality
- ϕ confesses the inequality
5. Conclusions and Future Works
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duren, P. Univalent Functions; Grundlehren der mathematischen Wissenschaften; Springer: New York, NY, USA, 1983; Volume 259, ISBN 0-387-90795-5. [Google Scholar]
- Sàlàgean, G.S. Subclasses of univalent functions, Complex Analysis-Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981). In Lecture Notes in Mathematics; Springer: Berlin, Germany, 1983; Volume 1013, pp. 362–372. [Google Scholar]
- Al-Oboudi, F.M. On univalent functions defined by a generalized Sàlàgean operator. Int. J. Math. Math. Sci. 2004, 27, 1429–1436. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Darus, M. Subordination inequalities of a new Sàlàgean difference operator. Int. J. Math. Comput. Sci. 2019, 14, 573–582. [Google Scholar]
- Ovsyannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Sidorov, N.; Loginov, B.; Sinitsyn, A.V.; Falaleev, M.V. Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications; Springer: New York, NY, USA, 2013. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Lupas, A.A. On special differential subordinations using Salagean and Ruscheweyh operators. Math. Inequal. Appl. 2009, 12, 781–790. [Google Scholar]
- Arif, M.; Ahmad, K.; Liu, J.L.; Sokół, J. A new class of analytic functions associated with Sălăgean operator. J. Funct. Spaces 2019, 6157394. [Google Scholar] [CrossRef]
- Sakaguchi, K. On a certain univalent mapping. J. Math. Soc. Jpn. 1959, 11, 72–75. [Google Scholar] [CrossRef]
- Das, R.N.; Singh, P. On subclasses of schlicht mapping. Indian J. Pure Appl. Math. 1977, 8, 864–872. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, R.W.; Darus, M. New Symmetric Differential and Integral Operators Defined in the Complex Domain. Symmetry 2019, 11, 906. https://doi.org/10.3390/sym11070906
Ibrahim RW, Darus M. New Symmetric Differential and Integral Operators Defined in the Complex Domain. Symmetry. 2019; 11(7):906. https://doi.org/10.3390/sym11070906
Chicago/Turabian StyleIbrahim, Rabha W., and Maslina Darus. 2019. "New Symmetric Differential and Integral Operators Defined in the Complex Domain" Symmetry 11, no. 7: 906. https://doi.org/10.3390/sym11070906
APA StyleIbrahim, R. W., & Darus, M. (2019). New Symmetric Differential and Integral Operators Defined in the Complex Domain. Symmetry, 11(7), 906. https://doi.org/10.3390/sym11070906