Origin of Terrestrial Bioorganic Homochirality and Symmetry Breaking in the Universe
Abstract
:1. Introduction
2. Typical Scenarios for the Origin of Homochirality
2.1. The Cosmic Scenario
- (i)
- Prebiotic simple molecules were densely accumulated on interstellar dust surfaces in dense molecular clouds [17];
- (ii)
- “Chiral radiation” in space, for example, circularly polarized photons or spin-polarized particles, induced asymmetric reactions and produced non-racemic mixtures of chiral complex organic materials including bioorganic precursors as “asymmetric seeds”;
- (iii)
- The “asymmetric seeds” were transported with meteorites or asteroids to the primitive Earth resulting in terrestrial bioorganic homochirality via some types of “asymmetric amplification” mechanism.
2.1.1. Circularly Polarized Photons
2.1.2. Spin-Polarized Leptons
2.2. The Intrinsic Scenario
3. Experimental Approaches to Examine the Scenarios
3.1. The Cosmic Scenario
3.1.1. Circularly Polarized Photons
3.1.2. Spin-Polarized Leptons
3.2. The Intrinsic Scenario
4. Conclusions
- (1)
- Astronomical observations of polarized radiation from various star-forming and high-energy phenomena burst regions in space using highly sensitive polarization detecting systems settled in astronomical observatories;
- (2)
- Experiments with polarized quantum beams from high-energy particle accelerators irradiating amino acids or sugars and their precursor molecules, followed by chemical and optical measurements of enantiomeric excesses;
- (3)
- First principal calculations of asymmetric optical responses and the subsequent asymmetric chemical reactions for amino acids or sugars and their precursor molecules, including the intrinsic energy difference between the enantiomers derived from PV.
Funding
Acknowledgments
Conflicts of Interest
References
- Bonner, W.A. The origin and amplification of bioorganic chirality. Orig. Life Evol. Biosph. 1991, 21, 59–111. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.; Chrysostomou, A.; Hough, J.; Gledhill, T.; McCall, A.; Clark, S.; Menard, F.; Tamura, M. Circular polarization in star-formation regions: Implications for bioorganic homochirality. Science 1998, 281, 672–674. [Google Scholar] [CrossRef] [PubMed]
- Meierhenrich, U.J. Amino acids and the Asymmetry of Life. In Advances in Astrobiology and Biogeophysics; Brack, A., Horneck, G., McKay, C.P., Stan-Lotter, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Garay, A.S.; Keszthelyi, L.; Demeter, I.; Hrasko, P. Origin of asymmetry in biomolecules. Nature 1974, 250, 332–333. [Google Scholar] [CrossRef] [PubMed]
- Cline, D.B.; Liu, Y.; Wang, H. Effect of a chiral impulse on the weak interaction induced handedness in a prebiotic medium. Orig. Life Evol. Biosph. 1995, 25, 201–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cline, D.B. Supernova antineutrino interactions cause chiral symmetry breaking and possibly homochiral biomaterials for life. Chirality 2005, 17, S234–S239. [Google Scholar] [CrossRef] [PubMed]
- Gusev, G.A.; Saito, T.; Tsarev, V.A.; Uryson, A.V. A relativistic neutron fireball from a supernova explosion as a possible source of chiral influence. Orig. Life Evol. Biosph. 2007, 37, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Gusev, G.A.; Kobayashi, K.; Moiseenko, E.V.; Poluhina, N.G.; Saito, T.; Ye, T.; Tsarev, V.A.; Xu, J.; Huang, Y.; Zhang, G. Results of the second stage of the investigation of the radiation mechanism of chiral influence (RAMBAS-2 experiment). Orig. Life Evol. Biosph. 2008, 38, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Tsarev, V.A. Physical and astrophysical aspects of the problem of origin of chiral asymmetry of the biosphere. Phys. Part Nucl. 2009, 40, 998–1029. [Google Scholar] [CrossRef]
- Cline, D.B. Possible physical mechanisms in the galaxy to cause homochiral biomaterials for life. Symmetry 2010, 2, 1450–1460. [Google Scholar] [CrossRef]
- Boyd, R.N.; Kajino, T.; Onaka, T. Supernovae and the chirality of the amino acids. Astrobiology 2010, 10, 561–568. [Google Scholar] [CrossRef]
- Boyd, R.N.; Kajino, T.; Onaka, T. Supernovae, neutrinos, and the chirality of the amino acids. Int. J. Mol. Sci. 2011, 12, 3432–3444. [Google Scholar] [CrossRef] [PubMed]
- Famiano, M.; Boyd, R.N.; Kajino, T.; Onaka, T.; Koehler, K.; Hulbert, S. Determining amino acid chirality in the supernova neutrino processing model. Symmetry 2014, 6, 909–925. [Google Scholar] [CrossRef]
- Famiano, M.; Boyd, R.N.; Kajino, T.; Onaka, T. Selection of amino acid chirality via neutrino interactions with 14N in crossed electric and magnetic fields. Astrobiology 2018, 18, 190–206. [Google Scholar] [CrossRef] [PubMed]
- Mason, S.F. Origin of bioorganic handedness. Nature 1984, 311, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Quack, M. How important is parity violation for molecular and bioorganic chirality? Angew. Chem. Int. Ed. 2002, 41, 4618–4630. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.M.; Kouchi, A.; Niesson, W.; Irth, H.; van Paradijs, J.; de Groot, M.; Hermsen, W. Interstellar dust, chirality, comets, and the origins of life: Life from dead stars? J. Biol. Phys. 1994, 20, 61–70. [Google Scholar] [CrossRef]
- Cronin, J.R.; Pizzarello, S. Enantiomeric excesses in meteoritic amino acids. Science 1997, 275, 951–955. [Google Scholar] [CrossRef]
- Soai, K.; Kawasaki, T. Asymmetric Autocalysis with Amplification of Chirality. Top. Curr. Chem. 2008, 284, 1–33. [Google Scholar]
- Chauvin, M.; Florén, H.-G.; Jackson, M.; Kamae, T.; Kawano, T.; Kiss, M.; Kole, M.; Mikhalev, V.; Moretti, E.; Olofsson, G.; et al. Observation of polarized hard X-ray emission from the Crab by the PoGOLite Pathfinder. Month. Not. R. Astron. Soc. Lett. 2016, 456, L84–L88. [Google Scholar] [CrossRef]
- Chauvin, M.; Florén, H.-G.; Friis, M.; Jackson, M.; Kamae, T.; Kataoka, J.; Kawano, T.; Kiss, M.; Mikhalev, V.; Mizuno, T.; et al. Shedding new light on the Crab with polarized X-rays. Sci. Rep. 2017, 7, 7816. [Google Scholar] [CrossRef]
- Yonetoku, D.; Murakami, T.; Sakashita, T.; Morihara, Y.; Kikuchi, Y.; Takahashi, T.; Gunji, S.; Mihara, T.; Kubo, S. Detection of Gamma-Ray Polarization in Prompt Emission of GRB 100826A. Astrophys. J. 2011, 743, L30. [Google Scholar] [CrossRef]
- Wiersema, K.; Covino, S.; Toma, K.; van der Horst, A.J.; Varela, K.; Min, M.; Greiner, J.; Starling, R.L.C.; Tanvir, N.R.; Wijers, R.A.M.J.; et al. Circular polarization in the optical afterglow of GRB 121024A. Nature 2014, 509, 201–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukue, T.; Tamura, M.; Kandori, R.; Kusakabe, N.; Hough, J.H.; Lucas, P.W.; Bailey, J.; Whittet, D.C.B.; Nakajima, Y.; Hashimoto, J.; et al. Near-infrared circular polarimetry and correlation diagrams in the Orion Becklin-Neugebauer/Kleinman-Low region: Contribution of dichroic extinction. Astrophys. J. Lett. 2009, 692, L88–L91. [Google Scholar] [CrossRef]
- Kwon, J.; Tamura, M.; Lucas, P.W.; Hashimoto, J.; Kusakabe, N.; Kandori, R.; Nakajima, Y.; Nagayama, T.; Nagata, T.; Hough, J.H. Near infrared circular polarization images of NGC 6334-V. Astrophys. J. Lett. 2013, 765, L6. [Google Scholar] [CrossRef]
- Neha, S.; Maheswar, G.; Soam, A.; Lee, C.W. Polarization of seven MBM clouds at high galactic latitude. Month. Not. R. Astron. Soc. 2018, 476, 4442–4458. [Google Scholar] [CrossRef]
- Sakurai, T.; Yanagisawa, K.; Kobiki, T.; Kasahara, S.; Nakakubo, K. Sunspot magnetic fields observed with a large-format infrared array. Publ. Astron. Soc. Jpn. 2001, 53, 923–930. [Google Scholar] [CrossRef]
- Barkats, D.; Bischoff, C.; Farese, P.; Fitzpatrick, L.; Gaier, T.; Gundersen, J.O.; Hedman, M.M.; Hyatt, L.; Mcmahon, J.J.; Samtleben, D.; et al. First measurements of the polarization of the cosmic microwave background radiation at small angular scales from CAPMAP. Astrophys. J. 2005, 619, L127–L130. [Google Scholar] [CrossRef]
- Matsuo, K.; Matsushima, Y.; Fukuyama, T.; Senba, S.; Gekko, K. Vacuum-ultravilet circulardichroism of amino acids as revealed by synchrotron radiation spectrophotometer. Chem. Lett. 2002, 31, 826–827. [Google Scholar] [CrossRef]
- Tanaka, M.; Kodama, Y.; Nakagawa, K. Circular dichroism of amino acid films in UV-VUV region. Enantiomer 2002, 7, 185–190. [Google Scholar] [CrossRef]
- Kaneko, F.; Yagi-Watanabe, K.; Tanaka, M.; Nakagawa, K. Natural circular dichroism spectra of alanine and valine films in vacuum ultraviolet region. J. Phys. Soc. Jpn. 2009, 78, 013001. [Google Scholar] [CrossRef]
- Kuhn, W.; Braun, E. Photochemische erzeugung optisch aktiver stoffe. Naturwissenschaften 1929, 17, 227–228. [Google Scholar] [CrossRef]
- Norden, B. Optical activity developed by preferential racemization of one enantiomer in Racemic Cr(III) (ox)33− induced by irradiation with circularly polarized light. Acta Chem. Scand. 1970, 24, 349–351. [Google Scholar] [CrossRef]
- Flores, J.J.; Bonner, W.A.; Massey, G.A. Asymmetric photolysis of (RS)-leucine with circularly polarized ultraviolet light. J. Am. Chem. Soc. 1977, 99, 3622–3625. [Google Scholar] [CrossRef] [PubMed]
- Takano, Y.; Kaneko, T.; Kobayashi, K.; Takahashi, J. Asymmetric photolysis of (DL)-isovaline by synchrotron radiation. Orig. Life Evol. Biosph. 2002, 32, 447–448. [Google Scholar]
- Nishino, H.; Kosaka, A.; Hembury, G.A.; Shitomi, H.; Onuki, H.; Inoue, Y. Mechanism of pH dependent photolysis of aliphatic amino acids and enantiomeric enrichment of racemic leucine by circularly polarized light. Org. Lett. 2001, 3, 921–924. [Google Scholar] [CrossRef] [PubMed]
- Takano, Y.; Takahashi, J.; Kaneko, T.; Marumo, K.; Kobayashi, K. Asymmetric synthesis of amino acid precursors in interstellar complex organics by circularly polarized light. Earth Planet. Sci. Lett. 2007, 254, 106–114. [Google Scholar] [CrossRef]
- Kobayashi, K.; Kaneko, K.; Takahashi, J.; Takano, Y. High molecular weight complex organics in interstellar space and their relevance to origins of life. In Astrobiology: From Simple Molecules to Primitive Life; Basiuk, V., Ed.; American Scientific Publisher: Valencia, CA, USA, 2008. [Google Scholar]
- Meierhenrich, U.J.; Nahon, L.; Alcaraz, C.; Bredehöft, J.H.; Hoffmann, S.V.; Barbier, B.; Brack, A. Asymmetric vacuum UV photolysis of the amino acid leucine in the solid state. Angew. Chem. Int. Ed. 2005, 44, 5630–5634. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J. Asymmetric photolysis of thin solid film of aromatic amino acid with circularly polarized light. Orig. Life Evol. Biosph. 2006, 36, 280–282. [Google Scholar]
- Takahashi, J.; Shinojima, H.; Seyama, M.; Ueno, Y.; Kaneko, T.; Kobayashi, K.; Mita, H.; Adachi, M.; Hosaka, M.; Katoh, M. Chirality emergence in thin solid fFilms of amino acids by polarized light from synchrotron radiation and free electron laser. Int. J. Mol. Sci. 2009, 10, 3044–3064. [Google Scholar] [CrossRef]
- Matsuo, K.; Izumi, Y.; Takahashi, J.; Fujimoto, M.; Katoh, M. Emergence of biological homochirality by irradiation of polarized quantum beams. UVSOR Act. Rep. 2016 2017, 44, 157. [Google Scholar]
- Takahashi, J.; Sakamoto, T.; Izumi, Y.; Matsuo, K.; Fujimoto, M.; Katoh, M.; Kebukawa, Y.; Kobayashi, K. Circular dichroism analysis of optical activity emergence in amino-acid thin films irradiated by vacuum-ultraviolet circularly-polarized light. In Proceedings of the 22nd Hiroshima International Symposium on Synchrotron Radiation, Higashi-Hiroshima, Japan, 7–8 March 2019. [Google Scholar]
- Takahashi, J.; Suzuki, N.; Kebukawa, Y.; Kobayashi, K.; Izumi, Y.; Matsuo, K.; Fujimoto, M.; Katoh, M. Optical activity emergence in glycine by circularly polarized light. UVSOR Act. Rep. 2016 2017, 44, 156. [Google Scholar]
- Meinert, C.; Myrgorodska, I.; Marcellus, P.; Buhse, T.; Nahon, L.; Hoffmann, S.V.; d’Hendecourt, L.L.S.; Meierhenrich, U.J. Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science 2016, 352, 208–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, A.D.; Meinert, C.; Sugahara, H.; Jones, N.C.; Hoffmann, S.V.; Meierhenrich, U.J. The Astrophysical Formation of Asymmetric Molecules and the Emergence of a Chiral Bias. Life 2019, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Akaboshi, M.; Noda, M.; Kawai, K.; Maki, H.; Kawamoto, K. Asymmetrical radical formation in D- and L-alanines irradiated with yttrium-90β-rays. Orig. Life 1979, 9, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Kessler, J. Electron Dichroism: Interaction of Polarized Electrons with Chiral Molecules. Phys. Essays 2000, 13, 421–426. [Google Scholar] [CrossRef]
- Rosenberg, R.A.; Abu Haija, M.; Ryan, P.J. Chiral-selective chemistry induced by spin-polarized secondary electrons from a magnetic substrate. Phys. Rev. Lett. 2008, 101, 178301. [Google Scholar] [CrossRef]
- Rosenberg, R.A.; Mishra, D.; Naaman, R. Chiral selective chemistry induced by natural selection of spin-solarized electrons. Angew. Chem. Int. Ed. 2015, 54, 7295–7298. [Google Scholar] [CrossRef]
- Burkov, V.I.; Goncharova, L.A.; Gusev, G.A.; Hashimoto, H.; Kaneko, F.; Kaneko, T.; Kobayashi, K.; Mita, H.; Moiseenko, E.V.; Ogawa, T.; et al. Asymmetric reactions of amino-acid-related compounds by polarized electrons from beta-decay radiation. Orig. Life Evol. Biosph. 2009, 39, 295–296. [Google Scholar]
- Lemmon, R.M.; Crowe, K.M.; Gygax, F.N.; Johnson, R.F.; Patterson, B.D.; Brewer, J.H.; Fleming, D.G. Search for selectivity between optical isomers in reactions of polarized positive muons with alanines and octanols. Nature 1974, 252, 692–694. [Google Scholar] [CrossRef]
- Darquié, B.; Stoeffler, C.; Shelkovnikov, A.; Daussy, C.; Amy-Klein, A.; Chardonnet, C.; Zrig, S.; Guy, L.; Crassous, J.; Soulard, P.; et al. Progress toward a first observation of parity violation in chiral molecules by high-resolution laser spectroscopy. Chirality 2010, 22, 870–884. [Google Scholar] [CrossRef]
- Takahashi, J.; Katoh, M.; Tamura, M.; Umemura, M.; Kusakabe, N.; Kwon, J.; Kobayashi, K.; Takashima, Y.; Hosaka, M.; Zen, H.; et al. NINS Astrobiology Center project: The origin of terrestrial bioorganic homochirality relevance to asymmetry of the universe—Approaches with synergy effects of observations, experiments and computations. In Proceedings of the 26th Goldschmidt Conference (Goldschmidt2016), Yokohama, Japan, 26 June–1 July 2016. [Google Scholar]
- Takahashi, J. Biological homochirality and symmertry breaking of the universe. In Proceedings of the XVIII International Conference on the Origin of Life (ISSOL2017), San Diego, CA, USA, 16–21 July 2017. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, J.-i.; Kobayashi, K. Origin of Terrestrial Bioorganic Homochirality and Symmetry Breaking in the Universe. Symmetry 2019, 11, 919. https://doi.org/10.3390/sym11070919
Takahashi J-i, Kobayashi K. Origin of Terrestrial Bioorganic Homochirality and Symmetry Breaking in the Universe. Symmetry. 2019; 11(7):919. https://doi.org/10.3390/sym11070919
Chicago/Turabian StyleTakahashi, Jun-ichi, and Kensei Kobayashi. 2019. "Origin of Terrestrial Bioorganic Homochirality and Symmetry Breaking in the Universe" Symmetry 11, no. 7: 919. https://doi.org/10.3390/sym11070919
APA StyleTakahashi, J. -i., & Kobayashi, K. (2019). Origin of Terrestrial Bioorganic Homochirality and Symmetry Breaking in the Universe. Symmetry, 11(7), 919. https://doi.org/10.3390/sym11070919