A Variant of Chebyshev’s Method with 3αth-Order of Convergence by Using Fractional Derivatives
Abstract
:1. Introduction
2. Proposed Methods and Their Convergence Analysis
3. Numerical Performance of Proposed Schemes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mathai, A.M.; Haubold, H.J. Fractional and Multivariable Calculus. In Model Building and Optimization Problems; Springer Optimization and Its Applications 122; Springer: Berlin, Germany, 2017. [Google Scholar]
- Ross, B. A brief history and exposition of the fundamental theory of fractional calculus. In Fractional Calculus and Its Applications; Ross, B., Ed.; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1975; Volume 457, pp. 1–36. [Google Scholar]
- Atanackovic, T.M.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles; Wiley: London, UK, 2014. [Google Scholar]
- Khan, M.A.; Ullah, S.; Farhan, M. The dynamics of Zika virus with Caputo fractional derivative. AIMS Math. 2019, 4, 134–146. [Google Scholar] [CrossRef]
- Brambila, F.; Torres, A. Fractional Newton-Raphson Method. arXiv 2017, arXiv:1710.07634v3. [Google Scholar]
- Akgül, A.; Cordero, A.; Torregrosa, J.R. A fractional Newton method with 2th-order of convergence and its stability. Appl. Math. Lett. 2019, 98, 344–351. [Google Scholar] [CrossRef]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Lombardero, A. Cálculo Fraccionario y dinámica newtoniana. Pensam. Mat. 2014, IV, 77–106. [Google Scholar]
- Caputo, M.C.; Torres, D.F.M. Duality for the left and right fractional derivatives. Signal Process 2015, 107, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Odibat, Z.M.; Shawagfeh, N.T. Generalized Taylor’s formula. Appl. Math. Comput. 2007, 186, 286–293. [Google Scholar] [CrossRef]
- Ostrowski, A.M. Solution of Equations and Systems of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Magreñan, A.Á. A new tool to study real dynamics: The convergence plane. Appl. Math. Comput. 2014, 248, 215–224. [Google Scholar] [CrossRef] [Green Version]
Iterations | ||||
---|---|---|---|---|
0.90 | −8.1274e-05+i4.6093e-04 | 9.2186e-04 | 4.6804e-04 | 250 |
0.91 | −3.2556e-05+i2.0787e-04 | 4.1575e-04 | 2.1041e-04 | 250 |
0.92 | −1.0632e-05+i7.7354e-05 | 1.5471e-04 | 7.8081e-05 | 250 |
0.93 | −2.5978e-06+i2.1869e-05 | 4.3739e-05 | 2.2023e-05 | 250 |
0.94 | −4.1185e-07+i4.0939e-06 | 8.1878e-06 | 4.1145e-06 | 250 |
0.95 | −1.6155e-08-i9.1923e-07 | 1.9214e-06 | 9.1937e-07 | 23 |
0.96 | 1.4985e-07-i7.7007e-07 | 1.9468e-06 | 7.8451e-07 | 13 |
0.97 | 3.4521e-07-i7.6249e-07 | 2.6824e-06 | 8.3699e-07 | 9 |
0.98 | 2.7084e-07-i3.4599e-07 | 1.9608e-06 | 4.3939e-07 | 7 |
0.99 | −6.3910e-07+i2.1637e-07 | 6.4318e-06 | 6.7474e-07 | 5 |
1.00 | −2.9769e-08+i0.0000e+00 | 3.0994e-03 | 2.9769e-08 | 3 |
Iterations | ||||
---|---|---|---|---|
0.90 | −8.1270e-05+i4.6090e-04 | 9.2190e-04 | 4.6800e-04 | 250 |
0.91 | −3.2560e-05+i2.0790e-04 | 4.1570e-04 | 2.1040e-04 | 250 |
0.92 | −1.0630e-05+i7.7350e-05 | 1.5470e-04 | 7.8080e-05 | 250 |
0.93 | −2.5980e-06+i2.1870e-05 | 4.3740e-05 | 2.2020e-05 | 250 |
0.94 | −4.1180e-07+i4.0940e-06 | 8.1880e-06 | 4.1150e-06 | 250 |
0.95 | −1.6680e-07+i9.2200e-07 | 1.9640e-06 | 9.3690e-07 | 22 |
0.96 | −3.4850e-07+i7.2840e-07 | 2.0220e-06 | 8.0750e-07 | 12 |
0.97 | 5.5470e-07-i6.3310e-07 | 2.6850e-06 | 8.4180e-07 | 7 |
0.98 | −3.1400e-07+i2.0370e-07 | 1.6820e-06 | 3.7430e-07 | 7 |
0.99 | 1.2990e-07-i8.4600e-08 | 1.2680e-06 | 1.5500e-07 | 6 |
1.00 | −2.9770e-08+i0.0000e+00 | 3.0990e-03 | 2.9770e-08 | 3 |
Iterations | ||||
---|---|---|---|---|
0.90 | −8.1275e-05-i4.6093e-04 | 9.2187e-04 | 4.6804e-04 | 250 |
0.91 | −3.2556e-05-i2.0787e-04 | 4.1575e-04 | 2.1041e-04 | 250 |
0.92 | −1.0632e-05-i7.7354e-05 | 1.5471e-04 | 7.8081e-05 | 250 |
0.93 | −2.5978e-06-i2.1869e-05 | 4.3739e-05 | 2.2023e-05 | 250 |
0.94 | −4.1185e-07+i4.0939e-06 | 8.1878e-06 | 4.1145e-06 | 250 |
0.95 | 2.8656e-08-i9.4754e-07 | 1.9837e-06 | 9.4797e-07 | 23 |
0.96 | −3.2851e-07+i6.6774e-07 | 1.8538e-06 | 7.4418e-07 | 14 |
0.97 | 2.3413e-07-i4.2738e-07 | 1.5022e-06 | 4.8731e-07 | 11 |
0.98 | 2.0677e-07-i2.4623e-07 | 1.4017e-06 | 3.2154e-07 | 9 |
0.99 | 3.0668e-07-i2.2801e-07 | 3.3615e-06 | 3.8216e-07 | 7 |
1.00 | 1.2192e-16+i0.0000e+00 | 3.9356e-06 | 1.2192e-16 | 5 |
Iterations | ||||
---|---|---|---|---|
0.90 | −8.1274e-05-i4.6093e-04 | 9.2186e-04 | 4.6804e-04 | 250 |
0.91 | −3.2556e-05-i2.0787e-04 | 4.1575e-04 | 2.1041e-04 | 250 |
0.92 | −1.0632e-05-i7.7354e-05 | 1.5471e-04 | 7.8081e-05 | 250 |
0.93 | −2.5978e-06-i2.1869e-05 | 4.3739e-05 | 2.2023e-05 | 250 |
0.94 | −4.1185e-07+i4.0939e-06 | 8.1878e-06 | 4.1145e-06 | 250 |
0.95 | −1.1203e-07+i9.8331e-07 | 2.0799e-06 | 9.8967e-07 | 26 |
0.96 | −3.2473e-09-i7.0333e-07 | 1.7375e-06 | 7.0333e-07 | 19 |
0.97 | 5.9619e-08-i7.4110e-07 | 2.3750e-06 | 7.4349e-07 | 18 |
0.98 | 4.7121e-07+i7.4115e-07 | 4.1416e-06 | 8.7826e-07 | 19 |
0.99 | 3.9274e-08-i3.9674e-07 | 3.5758e-06 | 3.9868e-07 | 14 |
1.00 | 3.9559e-08+i4.8445e-07 | 7.8597e-03 | 4.8606e-07 | 8 |
Iterations | ||||
---|---|---|---|---|
0.90 | −8.1308e-05-i4.6100e-04 | 9.2200e-04 | 4.6811e-04 | 250 |
0.91 | −3.2562e-05-i2.0789e-04 | 4.1577e-04 | 2.1042e-04 | 250 |
0.92 | −1.0633e-05-i7.7355e-05 | 1.5471e-04 | 7.8082e-05 | 250 |
0.93 | −2.5978e-06-i2.1870e-05 | 4.3739e-05 | 2.2023e-05 | 250 |
0.94 | −4.1185e-07+i4.0939e-06 | 8.1878e-06 | 4.1145e-06 | 250 |
0.95 | −9.6563e-08+i9.3217e-07 | 1.9628e-06 | 9.3716e-07 | 28 |
0.96 | 1.3446e-08-i7.0728e-07 | 1.7477e-06 | 7.0741e-07 | 22 |
0.97 | −9.7497e-08+i1.0000e+00 | 1.7666e-06 | 2.1081e-07 | 15 |
0.98 | −1.8598e-07-i1.0000e+00 | 5.5924e-06 | 4.4631e-07 | 15 |
0.99 | −1.5051e-07+i5.1262e-07 | 4.9442e-06 | 5.3426e-07 | 13 |
1.00 | 3.9559e-08+i4.8445e-07 | 7.8597e-03 | 4.8606e-07 | 8 |
Iterations | ||||
---|---|---|---|---|
0.90 | −8.1275e-05+i4.6093e-04 | 9.2187e-04 | 4.6804e-04 | 250 |
0.91 | −3.2556e-05+i2.0787e-04 | 4.1575e-04 | 2.1041e-04 | 250 |
0.92 | −1.0632e-05+i7.7354e-05 | 1.5471e-04 | 7.8081e-05 | 250 |
0.93 | −2.5978e-06+i2.1869e-05 | 4.3739e-05 | 2.2023e-05 | 250 |
0.94 | −4.1185e-07+i4.0939e-06 | 8.1878e-06 | 4.1145e-06 | 250 |
0.95 | −9.1749e-08-i9.2392e-07 | 1.9434e-06 | 9.2846e-07 | 28 |
0.96 | 1.5946e-08+i1.0000e+00 | 6.4777e-07 | 1.0272e-07 | 12 |
0.97 | 1.2679e-07+i1.0000e+00 | 4.3336e-06 | 5.1715e-07 | 16 |
0.98 | −5.1142e-07+i7.8442e-07 | 4.5155e-06 | 9.3641e-07 | 16 |
0.99 | 9.3887e-08-i1.0000e+00 | 4.7305e-06 | 1.8942e-07 | 11 |
1.00 | −2.9297e-10-i1.0000e+00 | 1.4107e-05 | 5.9703e-10 | 9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordero, A.; Girona, I.; Torregrosa, J.R. A Variant of Chebyshev’s Method with 3αth-Order of Convergence by Using Fractional Derivatives. Symmetry 2019, 11, 1017. https://doi.org/10.3390/sym11081017
Cordero A, Girona I, Torregrosa JR. A Variant of Chebyshev’s Method with 3αth-Order of Convergence by Using Fractional Derivatives. Symmetry. 2019; 11(8):1017. https://doi.org/10.3390/sym11081017
Chicago/Turabian StyleCordero, Alicia, Ivan Girona, and Juan R. Torregrosa. 2019. "A Variant of Chebyshev’s Method with 3αth-Order of Convergence by Using Fractional Derivatives" Symmetry 11, no. 8: 1017. https://doi.org/10.3390/sym11081017
APA StyleCordero, A., Girona, I., & Torregrosa, J. R. (2019). A Variant of Chebyshev’s Method with 3αth-Order of Convergence by Using Fractional Derivatives. Symmetry, 11(8), 1017. https://doi.org/10.3390/sym11081017