Class of Analytic Functions Defined by q-Integral Operator in a Symmetric Region
Abstract
:1. Introduction
2. Main Results
3. Future Work
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kanas, S.; Wiśniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Wiśniowska, A. Conic regions and k-starlike functions. Revue Roumaine Mathématique Pures Appliquées 2000, 45, 647–657. [Google Scholar]
- Kanas, S. Alternative characterization of the class k-UCV and related classes of univalent functions. Serdica Math. J. 1999, 25, 341–350. [Google Scholar]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic regions and k-uniform convexity II. Zeszyty Naukowe Politechniki Rzeszowskiej Matematyka 1998, 170, 65–78. [Google Scholar]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press: Chichester, UK, 1989; pp. 329–354. [Google Scholar]
- Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. 2014, 2014, 1–6. [Google Scholar] [CrossRef]
- Arif, M.; Ahmad, B. New subfamily of meromorphic starlike functions in circular domain involving q-differential operator. Math. Slovaca 2018, 68, 1049–1056. [Google Scholar] [CrossRef]
- Arif, M.; Srivastava, H.M.; Umar, S. Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions. RACSAM 2019, 113, 1211–1221. [Google Scholar] [CrossRef]
- Mahmood, S.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Khan, B.; Tahir, M. A certain subclass of meromorphically q-starlike functions associated with the Janowski functions. J. Inequal. Appl. 2019, 2019, 88. [Google Scholar] [CrossRef]
- Mahmood, S.; Jabeen, M.; Malik, S.N.; Srivastava, H.M.; Manzoor, R.; Riaz, S.M.J. Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative. J. Funct. Spaces 2018, 2018, 8492072. [Google Scholar] [CrossRef]
- Mahmood, S.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Khan, B.; Ali, I. Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 2019, 11, 347. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Altınkaya, S.; Yalcin, S. Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator. Filomat 2018, 32, 503–516. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Bansal, D. Close-to-convexity of a certain family of q-Mittag-Leffler functions. J. Nonlinear Var. Anal. 2017, 1, 61–69. [Google Scholar]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mostafa, A.O.; Aouf, M.K.; Zayed, H.M. Basic and fractional q-calculus and associated Fekete–Szegö problem for p-valently q-starlike functions and p-valently q-convex functions of complex order. Miskolc Math. Notes 2019, 20, 489–509. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef]
- Ahmad, k.; Arif, M.; Liu, J.-L. Convolution properties for a family of analytic functions involving q-analogue of Ruscheweyh differential operator. Turk. J. Math. 2019, 43, 1712–1720. [Google Scholar] [CrossRef]
- Huda, A.; Darus, M. Integral operator defined by q-analogue of Liu-Srivastava operator. Stud. Univ. Babes-Bolyai Math. 2013, 58, 529–537. [Google Scholar]
- Kanas, S.; Srivastava, H.M. Linear operators associated with k-uniformly convex functions. Integral Transforms Spec. Funct. 2000, 9, 121–132. [Google Scholar] [CrossRef]
- Mahmood, S.; Raza, N.; AbuJarad, E.S.A.; Srivastava, G.; Srivastava, H.M.; Malik, S.N. Geometric properties of certain classes of analytic functions associated with a q-Integral operator. Symmetry 2019, 11, 719. [Google Scholar] [CrossRef]
- Arif, M.; Haq, M.U.; Liu, J.-L. A subfamily of univalent functions associated with q-analogue of Noor integral operator. J. Func. Spaces 2018, 2018, 3818915. [Google Scholar] [CrossRef]
- Noor, K.I. On new classes of integral operators. J. Nat. Geom. 1999, 16, 71–80. [Google Scholar]
- Noor, K.I.; Noor, M.A. On integral operators. J. Math. Anal. Appl. 1999, 238, 341–352. [Google Scholar] [CrossRef]
- Aldawish, I.; Darus, M. Starlikness of q-differential operator involving quantum calculus. Korean J. Math. 2014, 22, 699–709. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator. ISRN Math. Anal. 2013, 2013, 382312. [Google Scholar] [CrossRef]
- Mohammed, A.; Darus, M. A generalized operator involving the q-hypergeometric function. Matematički Vesnik 2013, 65, 454–465. [Google Scholar]
- Noor, K.I.; Riaz, S. Generalized q-starlike functions. Stud. Sci. Math. Hung. 2017, 54, 509–522. [Google Scholar] [CrossRef]
- Noor, K.I.; Shahid, H. On dual sets and neighborhood of new subclasses of analytic functions involving q-derivative. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 1579–1585. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, M.R.; Arif, M. Some subclasses of close-to-convex mappings associated with conic regions. Appl. Math. Comput. 2016, 285, 94–102. [Google Scholar] [CrossRef]
- Sim, Y.J.; Kwon, O.S.; Cho, N.E.; Srivastava, H.M. Some classes of analytic functions associated with conic regions. Taiwan J. Math. 2012, 16, 387–408. [Google Scholar] [CrossRef]
- Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conferene on Complex Analysis; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press Inc.: Tianjin, China, 1992; pp. 157–169. [Google Scholar]
- Livingston, A.E. The coefficients of multivalent close-to-convex functions. Proc. Am. Math. Soc. 1969, 21, 545–552. [Google Scholar] [CrossRef]
- Libera, R.J.; Zlotkiewicz, E.J. Early coefficients of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
- Rogosinski, W. On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 1943, 48, 48–82. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Raza, M.; Javed, K.; Hussain, S.; Arif, M. Class of Analytic Functions Defined by q-Integral Operator in a Symmetric Region. Symmetry 2019, 11, 1042. https://doi.org/10.3390/sym11081042
Shi L, Raza M, Javed K, Hussain S, Arif M. Class of Analytic Functions Defined by q-Integral Operator in a Symmetric Region. Symmetry. 2019; 11(8):1042. https://doi.org/10.3390/sym11081042
Chicago/Turabian StyleShi, Lei, Mohsan Raza, Kashif Javed, Saqib Hussain, and Muhammad Arif. 2019. "Class of Analytic Functions Defined by q-Integral Operator in a Symmetric Region" Symmetry 11, no. 8: 1042. https://doi.org/10.3390/sym11081042
APA StyleShi, L., Raza, M., Javed, K., Hussain, S., & Arif, M. (2019). Class of Analytic Functions Defined by q-Integral Operator in a Symmetric Region. Symmetry, 11(8), 1042. https://doi.org/10.3390/sym11081042