Double-Quantitative Generalized Multi-Granulation Set-Pair Dominance Rough Sets in Incomplete Ordered Information System
Abstract
:1. Introduction
2. Preliminaries
3. GM-SPD-RS Models
4. DQGM-SPD-RS Models
4.1. Five GM-SPD-RS Models in IOIS
4.2. Rough Regions under the DQGM-SPD-RSI Model
Algorithm 1. Rough regions under the DQGM-SPD-RSI model |
Input:, , , information level parameter , adjustable error classification level parameter and grade parameter Output: , , , 1: for each , do 2: Compute , , and 3: end for 4: Initialize , , , 5: for each , do 6: if , then 7: else 8: end if 9: if , then 10: else 11: end if 12: end for 13: for each , do 14: 15: 16: 17: 18: end for 19: return , , , |
5. Example Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
- Zhou, Q.; Qin, X.L.; Xie, X.J. Dimension incremental feature selection approach for vertex cover of hypergraph using rough sets. IEEE Access 2018, 6, 50142–50153. [Google Scholar] [CrossRef]
- Liu, D.; Li, J.W. Safety monitoring data classification method based on wireless rough network of neighborhood rough sets. Saf. Sci. 2019, 118, 103–108. [Google Scholar] [CrossRef]
- Yu, B.; Guo, L.K.; Li, Q.G. A characterization of novel rough fuzzy sets of information systems and their application in decision making. Expert Syst. Appl. 2019, 122, 253–261. [Google Scholar] [CrossRef]
- Yu, B.; Cai, M.J.; Li, Q.G. A λ-rough set model and its applications with TOPSIS method to decision making. Knowl. Based Syst. 2019, 165, 420–431. [Google Scholar] [CrossRef]
- Zhang, L.; Zhan, J.M.; Xu, Z.S. Covering-based generalized IF rough sets with applications to multi-attribute decision-making. Inf. Sci. 2019, 478, 275–302. [Google Scholar] [CrossRef]
- Yin, Y.C.; Zhang, L.T.; Liao, W.Z.; Niu, H.W.; Chen, F.Z. A knowledge resources fusion method based on rough set theory for quality prediction. Comput. Ind. 2019, 108, 104–114. [Google Scholar] [CrossRef]
- Chen, D.G.; Zhang, X.X.; Wang, X.Z.; Liu, Y.J. Uncertainty learning of rough set-based prediction under a holistic framework. Inf. Sci. 2018, 463–464, 129–151. [Google Scholar] [CrossRef]
- Chen, Y.M.; Xue, Y.; Ma, Y.; Xu, F.J. Measures of uncertainty for neighborhood rough sets. Knowl. Based Syst. 2017, 120, 226–235. [Google Scholar] [CrossRef]
- Li, Z.W.; Liu, X.F.; Zhang, G.Q.; Xie, N.X.; Wang, S.C. A multi-granulation decision-theoretic rough set method for distributed fc-decision information systems: An application in medical diagnosis. Appl. Soft Comput. 2017, 56, 233–244. [Google Scholar] [CrossRef]
- Hu, M.J.; Yao, Y.Y. Structured approximations as a basis for three-way decisions in rough set theory. Knowl. Based Syst. 2019, 165, 92–109. [Google Scholar] [CrossRef]
- Bu, Z.; Wang, Y.Y.; Li, H.J.; Jiang, J.C.; Wu, Z.A.; Cao, J. Link prediction in temporal networks: Integrating survival analysis and game theory. Inf. Sci. 2019, 498, 41–61. [Google Scholar] [CrossRef]
- Rehman, N.; Ali, A.; Ali, M.I.; Park, C. SDMGRS: Soft Dominance Based Multi Granulation Rough Sets and Their Applications in Conflict Analysis Problems. IEEE Access 2018, 6, 31399–31416. [Google Scholar] [CrossRef]
- Zhang, C.; Li, D.Y.; Mu, Y.M.; Song, D. An interval-valued hesitant fuzzy multigranulation rough set over two universes model for steam turbine fault diagnosis. Appl. Math. Model. 2017, 42, 693–704. [Google Scholar] [CrossRef]
- Yao, Y.Y.; Wong, S.K.M. A decision theoretic framework for approximating concepts. Int. J. Man Mach. Stud. 1992, 37, 793–809. [Google Scholar] [CrossRef]
- Ziarko, W. Variable precision rough set model. J. Comput. Syst. Sci. 1993, 46, 39–59. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.Y.; Lin, T.Y. Generalization of rough sets using modal logics. Intell. Autom. Soft Comput. 1996, 2, 103–120. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Mo, Z.W.; Xiong, F.; Cheng, F. Comparative study of variable precision rough set model and graded rough set model. Int. J. Approx. Reason. 2012, 53, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Li, W.T.; Xu, W.H. Double-quantitative decision-theoretic rough set. Inf. Sci. 2015, 316, 54–67. [Google Scholar] [CrossRef]
- Fan, B.J.; Tsang, E.C.C.; Xu, W.H.; Yu, J.H. Double-quantitative rough fuzzy set based decisions: A logical operations method. Inf. Sci. 2017, 378, 264–281. [Google Scholar] [CrossRef]
- Li, W.T.; Witold, P.; Xue, X.P.; Xu, W.H.; Fan, B.J. Distance-based double-quantitative rough fuzzy sets with logic operations. Int. J. Approx. Reason. 2018, 101, 206–233. [Google Scholar] [CrossRef]
- Guo, Y.T.; Tsang, E.C.C.; Xu, W.H.; Chen, D.G. Logical disjunction double-quantitative fuzzy rough sets. In Proceedings of the 2018 International Conference on Machine Learning and Cybernetics (ICMLC), Chengdu, China, 15–18 July 2018; pp. 415–421. [Google Scholar]
- Guo, Y.T.; Tsang, E.C.C.; Xu, W.H.; Chen, D.G. Local logical disjunction double-quantitative rough sets. Inf. Sci. 2019, 500, 87–112. [Google Scholar] [CrossRef]
- Greco, S.; Matarazzo, B.; Slowingski, R. Rough approximation by dominance relations. Int. J. Intell. Syst. 2010, 17, 153–171. [Google Scholar] [CrossRef]
- Xu, W.H. Ordered Information System and Rough Set; Science Press: Beijing, China, 2013. (In Chinese) [Google Scholar]
- Wang, S.; Li, T.R.; Luo, C.; Chen, H.M.; Fujita, H. Domain-wise approaches for updating approximations with multi-dimensional variation of ordered information systems. Inf. Sci. 2019, 478, 100–124. [Google Scholar] [CrossRef]
- Li, M.M.; Xu, W.H. Rough fuzzy set of logical and operation of variable precision and grade based on dominance relation. J. Front. Comput. Sci. Technol. 2016, 10, 277–284. (In Chinese) [Google Scholar]
- Hu, M.; Li, M.M.; Xu, W.H. Rough set based on “conjunctive logic” operation of variable precision and grade in intuitionistic fuzzy ordered information system. Comput. Sci. 2017, 44, 206–210, 225. (In Chinese) [Google Scholar]
- Guo, Y.T.; Xu, W.H. Rough fuzzy set based on logical disjunct operation of variable precision and grade in ordered information system. In Proceedings of the Chinese Control and Decision Conference, Yinchuan, China, 28–30 May 2016; pp. 5508–5514. [Google Scholar]
- Qian, Y.H.; Liang, J.Y.; Yao, Y.Y.; Dang, C.Y. MGRS: A Multi-granulation Rough Set. Inf. Sci. 2010, 180, 949–970. [Google Scholar] [CrossRef]
- Qian, Y.H.; Liang, J.Y.; Dang, C.Y. Incomplete Multi-granulation Rough Set. IEEE Trans. Syst. Man Cybern. Syst. 2010, 40, 420–431. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Zhang, Q.; Wang, G.Y. The uncertainty of probabilistic rough sets in multi-granulation spaces. Int. J. Approx. Reason. 2016, 77, 38–54. [Google Scholar] [CrossRef]
- Xu, Y. Multigranulation rough set model based on granulation of attributes and granulation of attribute values. Inf. Sci. 2018, 484, 1–13. [Google Scholar] [CrossRef]
- Xu, W.H.; Zhang, X.; Wang, Q. A generalized multi-granulation rough set approach. In Proceedings of the Bio-Inspired Computing and Applications—7th International Conference on Intelligent Computing (ICIC 2011), Zhengzhou, China, 11–14 August 2011; pp. 681–689. [Google Scholar]
- Xu, W.H.; Guo, Y.T. Generalized multigranulation double-quantitative decision-theoretic rough set. Knowl. Based Syst. 2016, 105, 190–205. [Google Scholar] [CrossRef]
- Guo, Y.T.; Tsang, E.C.C.; Xu, W.H.; Chen, D.G. Adaptive weighted generalized multi-granulation interval-valued decision-theoretic rough sets. Knowl. Based Syst. 2020, 187. [Google Scholar] [CrossRef]
- Yu, J.H.; Zhang, B.; Chen, M.H.; Xu, W.H. Double-quantitative decision-theoretic approach to multi-granulation approximate space. Int. J. Approx. Reason. 2018, 98, 236–258. [Google Scholar] [CrossRef]
- Wojtowicza, M.; Jarosiński, M. Reconstructing the mechanical parameters of a transversely-isotropic rock based on log and incomplete core data integration. Int. J. Rock Mech. Min. 2019, 115, 111–120. [Google Scholar] [CrossRef]
- Lai, X.C.; Wu, X.; Zhang, L.Y.; Lu, W.; Zhong, C.Q. Imputations of missing values using a tracking-removed autoencoder trained with incomplete data. Neurocomputing 2019, 366, 54–65. [Google Scholar] [CrossRef]
- Ge, Y.W.; Xiao, M.Q.; Yang, Z.; Zhang, L.; Liang, Y.J. A hybrid hierarchical fault diagnosis method under the condition of incomplete decision information system. Appl. Soft Comput. 2018, 73, 350–365. [Google Scholar] [CrossRef]
- Dai, J.H.; Wei, B.J.; Zhang, X.H.; Zhang, Q.L. Uncertainty measurement for incomplete interval-valued information systems based on α-weak similarity. Knowl. Based Syst. 2017, 136, 159–171. [Google Scholar] [CrossRef]
- Liu, D.; Liang, D.C.; Wang, C.C. A novel three-way decision model based on incomplete information system. Knowl. Based Syst. 2016, 91, 32–45. [Google Scholar] [CrossRef]
- Luo, C.; Li, T.R.; Huang, Y.Y.; Fujita, H. Updating three-way decisions in incomplete multi-scale information systems. Inf. Sci. 2019, 476, 274–289. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, M. The role of single valued neutrosophic sets and rough sets in smart city: Imperfect and incomplete information systems. Measurement 2018, 124, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Kryszkiewicz, M. Rough set approach to incomplete information systems. Inf. Sci. 1998, 112, 39–49. [Google Scholar] [CrossRef]
- Zhi, H.L.; Li, J.H. Granule description based knowledge discovery from incomplete formal contexts via necessary attribute analysis. Inf. Sci. 2019, 485, 347–361. [Google Scholar] [CrossRef]
- Greco, S.; Molinaro, C.; Trubitsyna, I. Approximation algorithms for querying incomplete databases. Inf. Syst. 2019, 86, 28–45. [Google Scholar] [CrossRef]
- Stefanowski, J.; Tsoukiàs, A. Incomplete information tables and rough classification. Comput. Intell. 2010, 17, 545–566. [Google Scholar] [CrossRef]
- Zhai, Y.J.; Zhang, H. Variable precision multigranulation rough sets in incomplete information system. J. Nanjing Univ. Aeronaut. Astronaut. 2011, 43, 780–785. (In Chinese) [Google Scholar]
- Zhai, Y.J.; Zhang, H. Dominance-based multigranulation rough sets in incomplete information system. J. Nanjing Univ. Sci. Technol. 2012, 36, 66–72. (In Chinese) [Google Scholar]
- Yao, S.; Li, L.S. Optimistic multigranulation rough set in incomplete information system. Int. J. Appl. Math. Stat. 2013, 45, 28–35. [Google Scholar]
- Yao, S.; Li, L.S.; Xu, Y. VPT-OMGRS: Variable precision optimistic multigranulation rough set based on tolerance relations. J. Eng. Sci. Technol. Rev. 2013, 6, 48–54. [Google Scholar] [CrossRef]
- Yao, S.; Li, L.S. Approximation reductions in an incomplete variable precision multigranulation rough set. Comput. Model. New Technol. 2014, 18, 250–258. [Google Scholar]
- Lin, B.Y.; Xu, W.H. Multi-granulation rough set for incomplete interval-valued decision information systems based on multi-threshold tolerance relation. Inf. Sci. 2018, 10, 208. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.B.; Yang, J.Y.; Wu, C.; Yu, D.J. Dominance-based rough set approach and knowledge reductions in incomplete ordered information system. Inf. Sci. 2008, 178, 1219–1234. [Google Scholar] [CrossRef]
- Shao, M.W.; Zhang, W.X. Dominance relation and rules in an incomplete ordered information system. Int. J. Intell. Syst. 2005, 20, 13–27. [Google Scholar] [CrossRef]
- Luo, G.Z.; Yang, X.J.; Zhou, D.Q. Rough analysis model of multi-attribute decision making based on limited extended dominance relation. J. Syst. Manag. 2009, 18, 391–396. (In Chinese) [Google Scholar]
- Huang, L.P. Incomplete ordered information system rough set model based on set-pair dominant degree. J. Liaocheng Univ. Natl. Sci. Ed. 2017, 30, 97–101. (In Chinese) [Google Scholar]
- Cao, B.R.; Liu, Y. Variable precision rough set model based on set pair situation dominance relation. Comput. Eng. 2015, 41, 35–40. (In Chinese) [Google Scholar]
- Qian, W.B.; Shu, W.H. Attribute reduction in incomplete ordered information systems with fuzzy decision. Appl. Soft Comput. 2018, 73, 242–253. [Google Scholar] [CrossRef]
- Alcantud, J.C.R.; Feng, F.; Yager, R.R. An N-soft set approach to rough sets. IEEE Trans. Fuzzy Syst. 2019, 99, 1. [Google Scholar] [CrossRef]
0 | 0 | 0 | 0 | 1 | 2 | 1 | |||
1 | 1 | 1 | 0 | 2 | 0 | 0 | 0 | ||
2 | 1 | 1 | 0 | 1 | 0 | ||||
2 | 1 | 2 | 0 | 1 | 2 | 1 | |||
1 | 0 | 1 | 0 | 1 | 2 | 1 | |||
2 | 2 | 2 | 1 | 1 | 0 | 0 | |||
0 | 0 | 0 | 0 | 2 | 1 | 0 | |||
1 | 2 | 1 | 0 | 2 | 1 | 1 | |||
2 | 2 | 1 | 0 | 0 | 0 | ||||
1 | 1 | 1 | 1 | 2 | 2 | 1 |
20 | 10 | 5 | 4 | ||||
10 | 6 | 11 | 8 | ||||
6 | 5 | 6 | 4 | ||||
5 | 4 | 17 | 9 | ||||
12 | 7 | 6 | 4 | ||||
2 | 2 | 8 | 5 | ||||
14 | 6 |
20 | 10 | 8 | 6 | ||||
5 | 2 | 15 | 10 | ||||
8 | 5 | 4 | 3 | ||||
2 | 1 | 9 | 8 | ||||
9 | 6 | 14 | 9 | ||||
4 | 3 | 3 | 2 |
20 | 10 | 2 | 2 | ||||
13 | 8 | 16 | 8 | ||||
5 | 3 | 7 | 5 | ||||
7 | 6 | 6 | 3 | ||||
15 | 10 | 13 | 9 |
Model | ||||
---|---|---|---|---|
DQGM-SPD-RSI | ||||
DQOM-SPD-RSI | ||||
DQPM-SPD-RSI | ||||
DQGM-SPD-RSII | ||||
DQOM-SPD-RSII | ||||
DQPM-SPD-RSII | ||||
DQGM-SPD-RSIII | ||||
DQGM-SPD-RSIV | ||||
DQGM-SPD-RSV |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Z.-a.; Zhang, M.; Li, Y.-x.; Zhao, L.-p.; Sun, B.-x. Double-Quantitative Generalized Multi-Granulation Set-Pair Dominance Rough Sets in Incomplete Ordered Information System. Symmetry 2020, 12, 133. https://doi.org/10.3390/sym12010133
Xue Z-a, Zhang M, Li Y-x, Zhao L-p, Sun B-x. Double-Quantitative Generalized Multi-Granulation Set-Pair Dominance Rough Sets in Incomplete Ordered Information System. Symmetry. 2020; 12(1):133. https://doi.org/10.3390/sym12010133
Chicago/Turabian StyleXue, Zhan-ao, Min Zhang, Yong-xiang Li, Li-ping Zhao, and Bing-xin Sun. 2020. "Double-Quantitative Generalized Multi-Granulation Set-Pair Dominance Rough Sets in Incomplete Ordered Information System" Symmetry 12, no. 1: 133. https://doi.org/10.3390/sym12010133
APA StyleXue, Z. -a., Zhang, M., Li, Y. -x., Zhao, L. -p., & Sun, B. -x. (2020). Double-Quantitative Generalized Multi-Granulation Set-Pair Dominance Rough Sets in Incomplete Ordered Information System. Symmetry, 12(1), 133. https://doi.org/10.3390/sym12010133