Telemedicine Acceptance during the COVID-19 Pandemic: An Empirical Example of Robust Consistent Partial Least Squares Path Modeling
Abstract
:1. Introduction
2. Methods
2.1. Data
2.2. Partial Least Squares Path Modeling and Robust Partial Least Squares Path Modeling
2.3. Statistical Analysis Plan
3. Results
3.1. Primary Analysis
3.2. Partial Least Squares Path Modeling (PLS) Analysis
3.2.1. Measurement Models Analysis
3.2.2. Structural Models Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khan, G.F.; Sarstedt, M.; Shiau, W.L.; Hair, J.F.; Ringle, C.M.; Fritze, M.P. Methodological research on partial least squares structural equation modeling (PLS-SEM): An analysis based on social network approaches. Internet Res. 2019, 29, 407–429. [Google Scholar] [CrossRef]
- Hair, J.F.J.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; SAGE Publications: Thousand Oaks, CA, USA, 2016; ISBN 9781452217444. [Google Scholar]
- Klesel, M.; Schuberth, F.; Henseler, J.; Niehaves, B. A test for multigroup comparison using partial least squares path modeling. Internet Res. 2019, 29, 464–477. [Google Scholar] [CrossRef]
- Becker, J.M.; Rai, A.; Ringle, C.M.; Völckner, F. Discovering unobserved heterogeneity in structural equation models to avert validity threats. MIS Q. Manag. Inf. Syst. 2013, 37, 665–694. [Google Scholar] [CrossRef] [Green Version]
- Henseler, J.; Dijkstra, T.K.; Sarstedt, M.; Ringle, C.M.; Diamantopoulos, A.; Straub, D.W.; Ketchen, D.J.; Hair, J.F.; Hult, G.T.M.; Calantone, R.J. Common Beliefs and Reality About PLS: Comments on Rönkkö and Evermann (2013). Organ. Res. Methods 2014, 17, 182–209. [Google Scholar] [CrossRef] [Green Version]
- Shmueli, G.; Sarstedt, M.; Hair, J.F.; Cheah, J.H.; Ting, H.; Vaithilingam, S.; Ringle, C.M. Predictive model assessment in PLS-SEM: Guidelines for using PLSpredict. Eur. J. Mark. 2019, 53, 2322–2347. [Google Scholar] [CrossRef]
- Dijkstra, T.K.; Henseler, J. Consistent partial least squares path modeling. MIS Q. Manag. Inf. Syst. 2015, 39, 297–316. [Google Scholar] [CrossRef]
- Henseler, J. Partial least squares path modeling: Quo vadis? Qual. Quant. 2018, 52, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Schamberger, T.; Schuberth, F.; Henseler, J.; Dijkstra, T.K. Robust partial least squares path modeling. Behaviormetrika 2020, 47, 307–334. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis; Pearson: Harlow, UK, 2018; ISBN 978-0134995397. [Google Scholar]
- Niven, E.B.; Deutsch, C.V. Calculating a robust correlation coefficient and quantifying its uncertainty. Comput. Geosci. 2012, 40, 1–9. [Google Scholar] [CrossRef]
- Sood, S.; Mbarika, V.; Jugoo, S.; Dookhy, R.; Doarn, C.R.; Prakash, N.; Merrell, R.C. What is telemedicine? A collection of 104 peer-reviewed perspectives and theoretical underpinnings. Telemed. e-Health 2007, 13, 573–590. [Google Scholar] [CrossRef]
- Dick, S.; O’Connor, Y.; Thompson, M.J.; O’Donoghue, J.; Hardy, V.; Wu, T.-S.J.; O’Sullivan, T.; Chirambo, G.B.; Heavin, C. Considerations for Improved Mobile Health Evaluation: Retrospective Qualitative Investigation. JMIR mHealth uHealth 2020, 8, e12424. [Google Scholar] [CrossRef] [PubMed]
- Harst, L.; Lantzsch, H.; Scheibe, M. Theories predicting end-user acceptance of telemedicine use: Systematic review. J. Med. Internet Res. 2019, 21, e13117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ipsos Global Global Views On Healthcare—2018. Available online: https://www.ipsos.com/sites/default/files/Global%20Views%20on%20Healthcare%202018%20-%20Personel%20Health%20Perceptions.pdf (accessed on 20 March 2020).
- Bashshur, R.; Doarn, C.R.; Frenk, J.M.; Kvedar, J.C.; Woolliscroft, J.O. Telemedicine and the COVID-19 pandemic, lessons for the future. Telemed. e-Health 2020, 26, 571–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portnoy, J.; Waller, M.; Elliott, T. Telemedicine in the Era of COVID-19. J. Allergy Clin. Immunol. Pract. 2020, 8, 1489–1491. [Google Scholar] [CrossRef]
- Adams, J.G.; Walls, R.M. Supporting the Health Care Workforce During the COVID-19 Global Epidemic. JAMA 2020, 323, 1439–1440. [Google Scholar] [CrossRef] [Green Version]
- Giudice, A.; Barone, S.; Muraca, D.; Averta, F.; Diodati, F.; Antonelli, A.; Fortunato, L. Can teledentistry improve the monitoring of patients during the Covid-19 dissemination? A descriptive pilot study. Int. J. Environ. Res. Public Health 2020, 17, 3399. [Google Scholar] [CrossRef]
- Duffy, S.; Lee, T.H. In-person health care as option B. N. Engl. J. Med. 2018, 378, 104–106. [Google Scholar] [CrossRef]
- Anderson, R.M.; Heesterbeek, H.; Klinkenberg, D.; Hollingsworth, T.D. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet 2020, 395, 931–934. [Google Scholar] [CrossRef]
- Kim, J.; Park, H.A. Development of a health information technology acceptance model using consumers’ health behavior intention. J. Med. Internet Res. 2012. [Google Scholar] [CrossRef]
- Vega-Barbas, M.; Seoane, F.; Pau, I. Characterization of user-centered security in telehealth services. Int. J. Environ. Res. Public Health 2019, 16, 693. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Song, W.; Peng, X.; Shabbir, M. Predictors for e-government adoption: Integrating TAM, TPB, trust and perceived risk. Electron. Libr. 2017, 35, 2–20. [Google Scholar] [CrossRef]
- Rondan-Cataluña, F.J.; Arenas-Gaitán, J.; Ramírez-Correa, P.E. A comparison of the different versions of popular technology acceptance models a non-linear perspective. Kybernetes 2015, 44, 788–805. [Google Scholar] [CrossRef]
- Ramírez-Correa, P.; Rondán-Cataluña, F.J.; Moulaz, M.T.; Arenas-Gaitán, J. Purchase intention of specialty coffee. Sustainability 2020, 12, 1329. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.P.; Yang, H.Y. Exploring key factors in the choice of e-health using an asthma care mobile service model. Telemed. e-Health 2009, 15, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Han, X.; Dang, Y.; Meng, F.; Guo, X.; Lin, J. User acceptance of mobile health services from users’ perspectives: The role of self-efficacy and response-efficacy in technology acceptance. Inform. Health Soc. Care 2017, 42, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Saigi-Rubió, F.; Jiménez-Zarco, A.; Torrent-Sellens, J. Determinants of the intention to use telemedicine: Evidence from Primary Care Physicians. Int. J. Technol. Assess. Health Care 2016, 32, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Alaball, J.; Mateo, G.F.; Domingo, J.L.G.; Gomez, X.M.; Valmaña, G.S.; Ruiz-Comellas, A.; Seguí, F.L.; Cuyàs, F.G. Validation of a short questionnaire to assess healthcare professionals’ perceptions of asynchronous telemedicine services: The Catalan version of the health optimum telemedicine acceptance questionnaire. Int. J. Environ. Res. Public Health 2020, 17, 2202. [Google Scholar] [CrossRef] [Green Version]
- Saigí-Rubió, F.; Torrent-Sellens, J.; Jiménez-Zarco, A.I. Drivers of telemedicine use: International evidence from three samples of physicians. IN3 Work. Pap. Ser. 2014. [Google Scholar] [CrossRef] [Green Version]
- Jen, W.Y.; Hung, M.C. An empirical study of adopting mobile healthcare service: The family’s perspective on the healthcare needs of their elderly members. Telemed. e-Health 2010, 16, 41–48. [Google Scholar] [CrossRef]
- Hill, R.J.; Fishbein, M.; Ajzen, I. Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research.; Addison-Wesley: Reading, MA, USA, 1977; ISBN 9780201020892. [Google Scholar]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Hair, J.F. Partial Least Squares Structural Equation Modeling. In Handbook of Market Research; Homburg, C., Klarmann, M., Vomberg, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 1–40. [Google Scholar]
- Hubert, M.; Debruyne, M.; Rousseeuw, P.J. Minimum covariance determinant and extensions. Wiley Interdiscip. Rev. Comput. Stat. 2018, 10, e1421. [Google Scholar] [CrossRef] [Green Version]
- Hubert, M.; Debruyne, M. Minimum covariance determinant. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 36–43. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 9 September 2019).
- Ray, S.; Danks, N.P.; Velasquez Estrada, J.M.; Uanhoro, J.; Bejar, A.H.C. Package “SEMinR”. Domain-Specific Language for Building and Estimating Structural Equation Models. Available online: https://CRAN.R-project.org/package=seminr (accessed on 20 December 2019).
- Ripley, B.; Venables, B.; Bates, D.; Hornik, K.; Gebhardt, A.; Firth, D. Package “MASS”. Support Functions and Datasets for Venables and Ripley’s MASS. Available online: https://CRAN.R-project.org/package=MASS (accessed on 10 April 2020).
- Cepeda-Carrion, G.; Cegarra-Navarro, J.G.; Cillo, V. Tips to use partial least squares structural equation modelling (PLS-SEM) in knowledge management. J. Knowl. Manag. 2019, 23, 67–89. [Google Scholar] [CrossRef]
- Dijkstra, T.K.; Schermelleh-Engel, K. Consistent Partial Least Squares for Nonlinear Structural Equation Models. Psychometrika 2014, 79, 585–604. [Google Scholar] [CrossRef]
- Kamal, S.A.; Shafiq, M.; Kakria, P. Investigating acceptance of telemedicine services through an extended technology acceptance model (TAM). Technol. Soc. 2020, 60, 101212. [Google Scholar] [CrossRef]
- Dünnebeil, S.; Sunyaev, A.; Blohm, I.; Leimeister, J.M.; Krcmar, H. Determinants of physicians’ technology acceptance for e-health in ambulatory care. Int. J. Med. Inform. 2012, 81, 746–760. [Google Scholar] [CrossRef] [Green Version]
- Zailani, S.; Gilani, M.S.; Nikbin, D.; Iranmanesh, M. Determinants of telemedicine acceptance in selected public hospitals in Malaysia: Clinical perspective. J. Med. Syst. 2014, 38, 111. [Google Scholar] [CrossRef]
- Adenuga, K.I.; Iahad, N.A.; Miskon, S. Towards reinforcing telemedicine adoption amongst clinicians in Nigeria. Int. J. Med. Inform. 2017, 104, 84–96. [Google Scholar] [CrossRef]
- Tao, D.; Wang, T.; Wang, T.; Zhang, T.; Zhang, X.; Qu, X. A systematic review and meta-analysis of user acceptance of consumer-oriented health information technologies. Comput. Hum. Behav. 2020, 104, 106147. [Google Scholar] [CrossRef]
- Chau, P.Y.K.; Hu, P.J.H. Investigating healthcare professionals’ decisions to accept telemedicine technology: An empirical test of competing theories. Inf. Manag. 2002, 39, 297–311. [Google Scholar] [CrossRef]
- Kim, J.; DelliFraine, J.L.; Dansky, K.H.; McCleary, K.J. Physicians’ acceptance of telemedicine technology: An empirical test of competing theories. Int. J. Inf. Syst. Change Manag. 2010, 4, 210–225. [Google Scholar] [CrossRef]
- Ohannessian, R.; Duong, T.A.; Odone, A. Global Telemedicine Implementation and Integration Within Health Systems to Fight the COVID-19 Pandemic: A Call to Action. JMIR Public Health Surveill. 2020, 6, e18810. [Google Scholar] [CrossRef] [PubMed]
- Hollander, J.E.; Carr, B.G. Virtually Perfect? Telemedicine for Covid-19. N. Engl. J. Med. 2020, 382, 1679–1681. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.C.; Thomas, E.; Snoswell, C.L.; Haydon, H.; Mehrotra, A.; Clemensen, J.; Caffery, L.J. Telehealth for global emergencies: Implications for coronavirus disease 2019 (COVID-19). J. Telemed. Telecare 2020, 26, 309–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Latent Variable | Item | Description |
---|---|---|
Subjective norms | SN1 | The experts who influence my behavior would think that I should use telemedicine services. |
SN2 | My family would think that I should order the telemedicine service. | |
SN3 | My friends would think that I should order the telemedicine service. | |
Perceived behavioral control | PBC1 | I have the knowledge and ability to operate the telemedicine service. |
PBC2 | I think I can handle the telemedicine service. | |
PBC3 | Using the telemedicine service is entirely within my control. | |
Attitude | ATT1 | Using the telemedicine service is a good idea. |
ATT2 | The telemedicine service increases the healthcare service quality. | |
ATT3 | The adoption of telemedicine reduces the risks associated with health | |
ATT4 | The telemedicine service is valuable. | |
Perceived usefulness | PU1 | The telemedicine service will be beneficial to the care of people. |
PU4 | Using the telemedicine service will reduce the psychological burden of people. | |
PU3 | The advantages of the telemedicine service will outweigh the disadvantages. | |
Perceived ease of use | PEOU1 | Instructions for using equipment in the telemedicine service will be easy to follow. |
PEOU2 | It will be easy to learn how to use the telemedicine service. | |
PEOU3 | It will be easy for people to operate the equipment in the telemedicine service. | |
Behavioral intention | BI1 | I am glad to present the telemedicine service to my close ones. |
BI2 | I will adopt the telemedicine service. | |
BI3 | I will adopt the telemedicine service based on my close ones’ necessities. |
Variable | N | % |
---|---|---|
Gender | ||
Male | 111 | 56 |
Female | 89 | 44 |
Total | 200 | 100 |
Age | Mean 39.9 ± 16.65 | |
Range 18–85 years |
Item | Average | SD | Asymmetry | Kurtosis |
---|---|---|---|---|
SN1 | 3.68 | 1.403 | −0.055 | 0.020 |
SN2 | 3.52 | 1.378 | −0.462 | −0.590 |
SN3 | 3.61 | 1.421 | −0.326 | −0.526 |
PBC1 | 4.24 | 1.184 | −0.174 | −0.090 |
PBC2 | 4.46 | 1.267 | −0.231 | −0.064 |
PBC3 | 4.33 | 1.216 | −0.148 | −0.149 |
ATT1 | 5.00 | 1.315 | −0.724 | 0.836 |
ATT2 | 4.66 | 1.358 | −0.555 | 0.246 |
ATT3 | 4.21 | 1.286 | −0.456 | 0.140 |
ATT4 | 4.98 | 1.260 | −0.632 | 1.260 |
PU1 | 4.97 | 1.361 | −0.618 | 0.591 |
PU4 | 3.96 | 1.256 | −0.093 | 0.367 |
PU3 | 4.46 | 1.424 | −0.314 | −0.266 |
PEOU1 | 4.52 | 1.613 | −0.530 | −0.244 |
PEOU2 | 4.98 | 1.428 | −0.675 | 0.347 |
PEOU3 | 4.64 | 1.698 | −0.606 | −0.211 |
BI1 | 4.23 | 1.448 | −0.398 | 0.088 |
BI2 | 4.60 | 1.315 | −0.356 | 0.241 |
BI3 | 3.99 | 1.470 | −0.280 | −0.141 |
Model/Latent Variable | Traditional PLSc | Robust PLSc | ||
---|---|---|---|---|
Composite Reliability | AVE | Composite Reliability | AVE | |
TPB | ||||
Behavioral intention | 0.822 | 0.588 | 0.834 | 0.594 |
Attitude | 0.908 | 0.693 | 0.910 | 0.694 |
Subjective norms | 0.901 | 0.744 | 0.897 | 0.743 |
Perceived behavioral control | 0.906 | 0.747 | 0.912 | 0.751 |
TAM | ||||
Behavioral intention | 0.824 | 0.589 | 0.834 | 0.594 |
Attitude | 0.905 | 0.692 | 0.906 | 0.692 |
Perceived usefulness | 0.869 | 0.646 | 0.914 | 0.652 |
Perceived ease of use | 0.905 | 0.740 | 0.896 | 0.739 |
(a) | ||||||||||
Model/Independent Variable | Traditional PLSc | Robust PLSc | ||||||||
R2 | R2 | |||||||||
TPB | ||||||||||
Behavioral intention | 0.858 | 0.845 | ||||||||
TAM | ||||||||||
Perceived usefulness | 0.336 | 0.310 | ||||||||
Attitude | 0.932 | 0.840 | ||||||||
Behavioral intention | 0.815 | 0.808 | ||||||||
(b) | ||||||||||
Model/Relationship | Traditional PLSc | Robust PLSc | ||||||||
Original | Boot Mean | Boot SD | Perc 0.025 | Perc 0.975 | Original | Boot Mean | Boot SD | Perc 0.025 | Perc 0.975 | |
TPB | ||||||||||
Attitude -> behavioral intention | 0.713 | 0.707 | 0.075 | 0.546 | 0.838 | 0.712 | 0.709 | 0.079 | 0.534 | 0.851 |
Subjective norms -> behavioral intention | 0.243 | 0.248 | 0.075 | 0.107 | 0.395 | 0.240 | 0.249 | 0.076 | 0.110 | 0.389 |
Perceived behavioral control -> behavioral intention | 0.084 | 0.087 | 0.061 | −0.034 | 0.206 | 0.080 | 0.084 | 0.064 | −0.034 | 0.216 |
TAM | ||||||||||
Perceived ease of use -> perceived usefulness | 0.579 | 0.576 | 0.084 | 0.403 | 0.732 | 0.557 | 0.580 | 0.084 | 0.397 | 0.729 |
Perceived ease of use -> attitude | 0.031 | 0.025 | 0.075 | −0.136 | 0.168 | 0.103 | 0.020 | 0.077 | −0.134 | 0.169 |
Perceived usefulness -> attitude | 0.947 | 0.953 | 0.055 | 0.843 | 1.063 | 0.855 | 0.956 | 0.058 | 0.844 | 1.071 |
Perceived usefulness -> behavioral intention | 0.044 | 0.214 | 6.813 | −2.819 | 2.563 | 0.121 | −0.140 | 10.396 | −2.215 | 2.743 |
Attitude -> behavioral intention | 0.860 | 0.689 | 6.814 | −1.634 | 3.691 | 0.787 | 1.043 | 10.395 | −1.850 | 3.092 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Correa, P.; Ramírez-Rivas, C.; Alfaro-Pérez, J.; Melo-Mariano, A. Telemedicine Acceptance during the COVID-19 Pandemic: An Empirical Example of Robust Consistent Partial Least Squares Path Modeling. Symmetry 2020, 12, 1593. https://doi.org/10.3390/sym12101593
Ramírez-Correa P, Ramírez-Rivas C, Alfaro-Pérez J, Melo-Mariano A. Telemedicine Acceptance during the COVID-19 Pandemic: An Empirical Example of Robust Consistent Partial Least Squares Path Modeling. Symmetry. 2020; 12(10):1593. https://doi.org/10.3390/sym12101593
Chicago/Turabian StyleRamírez-Correa, Patricio, Catalina Ramírez-Rivas, Jorge Alfaro-Pérez, and Ari Melo-Mariano. 2020. "Telemedicine Acceptance during the COVID-19 Pandemic: An Empirical Example of Robust Consistent Partial Least Squares Path Modeling" Symmetry 12, no. 10: 1593. https://doi.org/10.3390/sym12101593
APA StyleRamírez-Correa, P., Ramírez-Rivas, C., Alfaro-Pérez, J., & Melo-Mariano, A. (2020). Telemedicine Acceptance during the COVID-19 Pandemic: An Empirical Example of Robust Consistent Partial Least Squares Path Modeling. Symmetry, 12(10), 1593. https://doi.org/10.3390/sym12101593