User Behavior on Online Social Networks: Relationships among Social Activities and Satisfaction
Abstract
:1. Introduction
2. Literature Review
3. Research Methodology
3.1. Research Model and Hypotheses Development
3.2. Data Collection and Measurements
4. Data Analysis and Results
4.1. Correlation Analysis
4.2. Structural Equation Modeling Analysis
4.2.1. Reflective Measurements Assessment
4.2.2. Collinearity Issues Assessment
4.2.3. Structural Model Relationships
4.2.4. Predictive Relevance
5. Discussion and Limitations
5.1. Discussion
5.2. Limitations and Future Directions of Research
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Celi, G.; Guarascio, D.; Simonazzi, A. A fragile and divided European Union meets Covid-19: Further disintegration or ‘Hamiltonian moment’? J. Ind. Bus. Econ. 2020, 47, 411–424. [Google Scholar] [CrossRef]
- Pérez-Escoda, A.; Jiménez-Narros, C.; Perlado-Lamo-de-Espinosa, M.; Pedrero-Esteban, L.M. Social Networks’ Engagement During the COVID-19 Pandemic in Spain: Health Media vs. Healthcare Professionals. Int. J. Environ. Res. Public Health 2020, 17, 5261. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Chen, H.; Ning, D.; Zhu, M.; Ai, C.; Qiu, X.; Dai, W. A Two-Tier Partition Algorithm for the Optimization of the Large-Scale Simulation of Information Diffusion in Social Networks. Symmetry 2020, 12, 843. [Google Scholar] [CrossRef]
- Yao, J.; Cao, X. The balancing mechanism of social networking overuse and rational usage. Comput. Hum. Behav. 2017, 75, 415–422. [Google Scholar] [CrossRef]
- Lenhart, A.; Purcell, K.; Smith, A.; Zickuhr, K. Social Media & Mobile Internet Use among Teens and Young Adults. Pew Internet Am. Life Proj. 2010. [Google Scholar] [CrossRef]
- Ilakkuvan, V.; Johnson, A.; Villanti, A.C.; Evans, W.D.; Turner, M. Patterns of Social Media Use and Their Relationship to Health Risks Among Young Adults. J. Adolesc. Health 2019, 64, 158–164. [Google Scholar] [CrossRef]
- Hruska, J.; Maresova, P. Use of Social Media Platforms among Adults in the United States—Behavior on Social Media. Societies 2020, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Toma, C.L.; Hancock, J.T. Self-Affirmation Underlies Facebook Use. Personal. Soc. Psychol. Bull. 2013, 39, 321–331. [Google Scholar] [CrossRef]
- Dhir, A.; Kaur, P.; Chen, S.; Lonka, K. Understanding online regret experience in Facebook use%Effects of brand participation, accessibility & problematic use. Comput. Hum. Behav. 2016, 59, 420–430. [Google Scholar] [CrossRef]
- Liao, C.-H.; Chen, L.-X.; Yang, J.-C.; Yuan, S.-M. A Photo Post Recommendation System Based on Topic Model for Improving Facebook Fan Page Engagement. Symmetry 2020, 12, 1105. [Google Scholar] [CrossRef]
- Paul, J.Z.; Friginal, E. The effects of symmetric and asymmetric social networks on second language communication. Comput. Assist. Lang. Learn. 2019, 32, 587–618. [Google Scholar] [CrossRef]
- Conejero, J.; Sánchez-Figueroa, F.; Rodríguez-Echeverría, R.; Preciado, J. SCPL: A Social Cooperative Programming Language to Automate Cooperative Processes in (A)Symmetric Social Networks. Symmetry 2016, 8, 71. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, A.M.; Haenlein, M. Users of the world, unite! The challenges and opportunities of Social Media. Bus. Horiz. 2010, 53, 59–68. [Google Scholar] [CrossRef]
- Kavianpour, S.; Tamimi, A.; Shanmugam, B. A privacy-preserving model to control social interaction behaviors in social network sites. J. Inf. Secur. Appl. 2019, 49, 102402. [Google Scholar] [CrossRef]
- Schlosser, A.E. Self-disclosure versus self-presentation on social media. Curr. Opin. Psychol. 2020, 31, 1–6. [Google Scholar] [CrossRef]
- Villanti, A.C.; Johnson, A.L.; Ilakkuvan, V.; Jacobs, M.A.; Graham, A.L.; Rath, J.M. Social media use and access to digital technology in US Young Adults in 2016. J. Med. Internet Res. 2017, 19, e196. [Google Scholar] [CrossRef]
- Valkenburg, P.M.; Peter, J.; Walther, J.B. Media Effects: Theory and Research. Annu. Rev. Psychol. 2016, 67, 315–338. [Google Scholar] [CrossRef] [Green Version]
- Boyd, D.M.; Ellison, N.B. Social network sites: Definition, history, and scholarship. J. Comput. Commun. 2007, 13, 210–230. [Google Scholar] [CrossRef] [Green Version]
- Shane-Simpson, C.; Manago, A.; Gaggi, N.; Gillespie-Lynch, K. Why do college students prefer Facebook, Twitter, or Instagram? Site affordances, tensions between privacy and self-expression, and implications for social capital. Comput. Hum. Behav. 2018, 86, 276–288. [Google Scholar] [CrossRef] [Green Version]
- Phua, J.; Jin, S.V.; Kim, J.J. Uses and gratifications of social networking sites for bridging and bonding social capital: A comparison of Facebook, Twitter, Instagram, and Snapchat. Comput. Hum. Behav. 2017, 72, 115–122. [Google Scholar] [CrossRef]
- Kim, C.; Shen, C. Connecting activities on Social Network Sites and life satisfaction: A comparison of older and younger users. Comput. Hum. Behav. 2020, 105, 106222. [Google Scholar] [CrossRef]
- Nabity-Grover, T.; Cheung, C.M.K.; Thatcher, J.B. Inside out and outside in: How the COVID-19 pandemic affects self-disclosure on social media. Int. J. Inf. Manag. 2020, 102188. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Zhou, S.J.; Guo, Z.C.; Zhang, L.G.; Min, H.J.; Li, X.M.; Chen, J.X. The Effect of Social Support on Mental Health in Chinese Adolescents During the Outbreak of COVID-19. J. Adolesc. Health 2020, 67, 514–518. [Google Scholar] [CrossRef]
- Tang, C.S.; Koh, Y.Y.W. Online social networking addiction among college students in Singapore: Comorbidity with behavioral addiction and affective disorder. Asian J. Psychiatr. 2017, 25, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Tafesse, W. The effect of social networking site use on college students’ academic performance: The mediating role of student engagement. Educ. Inf. Technol. 2020. [Google Scholar] [CrossRef]
- Abosag, I.; Ramadan, Z.B.; Baker, T.; Jin, Z. Customers’ need for uniqueness theory versus brand congruence theory: The impact on satisfaction with social network sites. J. Bus. Res. 2020, 117, 862–872. [Google Scholar] [CrossRef]
- Lee, Y. Motivations of employees’ communicative behaviors on social media: Individual, interpersonal, and organizational factors. Internet Res. 2020, 30, 971–994. [Google Scholar] [CrossRef]
- Moqbel, M.; Kock, N. Unveiling the dark side of social networking sites: Personal and work-related consequences of social networking site addiction. Inf. Manag. 2018, 55, 109–119. [Google Scholar] [CrossRef]
- Khan, N.A.; Khan, A.N. What followers are saying about transformational leaders fostering employee innovation via organisational learning, knowledge sharing and social media use in public organisations? Gov. Inf. Q. 2019, 36, 101391. [Google Scholar] [CrossRef]
- Verswijvel, K.; Heirman, W.; Hardies, K.; Walrave, M. Designing and validating the friendship quality on social network sites questionnaire. Comput. Hum. Behav. 2018, 86, 289–298. [Google Scholar] [CrossRef]
- Abdul Malik, K.A.; Ahmad, A. The Effect of Use of Social Media on Prosocial Behavior. Open J. Sci. Technol. 2019, 2, 14–20. [Google Scholar] [CrossRef]
- Sitar-Tăut, D.A.; Mican, D. MRS OZ: Managerial recommender system for electronic commerce based on Onicescu method and Zipf’s law. Inf. Technol. Manag. 2020, 21, 131–143. [Google Scholar] [CrossRef]
- Pollet, T.V.; Saxton, T.K. How Diverse Are the Samples Used in the Journals ‘Evolution & Human Behavior’ and ‘Evolutionary Psychology’? Evol. Psychol. Sci. 2019, 5, 357–368. [Google Scholar] [CrossRef] [Green Version]
- Cochran, W.G. Sampling Techniques, 3rd ed.; Wiley, Ed.; Wiley: Hoboken, NJ, USA, 1977; ISBN 978-0-471-16240-7. [Google Scholar]
- Starnes, D.S.; Yates, D.; Moore, D.S. The Practice of Statistics, 4th ed.; W. H. Freeman: New York, NY, USA, 2010; ISBN 142924559X. [Google Scholar]
- Bonett, D.G.; Wright, T.A. Sample size requirements for estimating Pearson, Kendall and Spearman correlations. Psychometrika 2000, 65, 23–28. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); SAGE Publications: Thousand Oaks, CA, USA, 2016; ISBN 9781483377445. [Google Scholar]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS 3. Available online: http://www.smartpls.com (accessed on 9 October 2020).
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis with Readings; Macmillan: New York, NY, USA, 1987; ISBN 0023489804. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Shmueli, G.; Ray, S.; Velasquez Estrada, J.M.; Chatla, S.B. The elephant in the room: Predictive performance of PLS models. J. Bus. Res. 2016, 69, 4552–4564. [Google Scholar] [CrossRef]
- Zou, X.; Ingram, P.; Higgins, E.T. Social networks and life satisfaction: The interplay of network density and regulatory focus. Motiv. Emot. 2015, 39, 693–713. [Google Scholar] [CrossRef] [Green Version]
- Reis, H.T.; Gable, S.L. Toward a Positive Psychology of Relationships. In Flourishing: Positive Psychology and the Life Well-Lived; American Psychological Association: Washington, DC, USA, 2004; pp. 129–159. [Google Scholar]
- Baumeister, R.F.; Leary, M.R. The Need to Belong: Desire for Interpersonal Attachments as a Fundamental Human Motivation. Psychol. Bull. 1995, 117, 497–529. [Google Scholar] [CrossRef]
- Zhan, L.; Sun, Y.; Wang, N.; Zhang, X. Understanding the influence of social media on people’s life satisfaction through two competing explanatory mechanisms. Aslib J. Inf. Manag. 2016, 68, 347–361. [Google Scholar] [CrossRef]
- Diener, E.; Emmons, R.A.; Larsem, R.J.; Griffin, S. The Satisfaction with Life Scale. J. Pers. Assess. 1985, 49, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Arampatzi, E.; Burger, M.J.; Novik, N. Social Network Sites, Individual Social Capital and Happiness. J. Happiness Stud. 2018, 19, 99–122. [Google Scholar] [CrossRef] [Green Version]
- Kross, E.; Verduyn, P.; Demiralp, E.; Park, J.; Lee, D.S.; Lin, N.; Shablack, H.; Jonides, J.; Ybarra, O. Facebook Use Predicts Declines in Subjective Well-Being in Young Adults. PLoS ONE 2013, 8, e69841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatini, F.; Sarracino, F. Online Networks and Subjective Well-Being. Kyklos 2017, 70, 456–480. [Google Scholar] [CrossRef]
- Burke, M.; Kraut, R.E. The Relationship Between Facebook Use and Well-Being Depends on Communication Type and Tie Strength. J. Comput. Commun. 2016, 21, 265–281. [Google Scholar] [CrossRef]
- Seo, S.; Almanza, B.; Miao, L.; Behnke, C. The Effect of Social Media Comments on Consumers’ Responses to Food Safety Information. J. Foodserv. Bus. Res. 2015, 18, 111–131. [Google Scholar] [CrossRef]
- Alnjadat, R.; Hmaidi, M.M.; Samha, T.E.; Kilani, M.M.; Hasswan, A.M. Gender variations in social media usage and academic performance among the students of University of Sharjah. J. Taibah Univ. Med. Sci. 2019, 14, 390–394. [Google Scholar] [CrossRef]
- Sahni, H.; Sharma, H. Role of social media during the COVID-19 pandemic: Beneficial, destructive, or reconstructive? Int. J. Acad. Med. 2020, 6, 70–75. [Google Scholar]
- Bettmann, J.E.; Anstadt, G.; Casselman, B.; Ganesh, K. Young Adult Depression and Anxiety Linked to Social Media Use: Assessment and Treatment. Clin. Soc. Work J. 2020. [Google Scholar] [CrossRef]
- Valenzuela, S.; Park, N.; Kee, K.F. Is There Social Capital in a Social Network Site?: Facebook Use and College Students’ Life Satisfaction, Trust, and Participation. J. Comput. Commun. 2009, 14, 875–901. [Google Scholar] [CrossRef] [Green Version]
Latent Reflective Variable | Reflective Indicators | Description | Mean | Standard Deviation |
---|---|---|---|---|
Private activities on social networks (PRASN) | PRASN1 | I spend a lot of time receiving updates from liked pages | 3.117 | 1.168 |
PRASN2 | I spend a lot of time chatting with others | 2.910 | 1.119 | |
Public activities on social networks (PUASN) | PUASN1 | I spend a lot of time looking at other users’ posts | 3.234 | 1.031 |
PUASN2 | I spend a lot of time posting things | 3.622 | 0.987 | |
PUASN3 | I spend a lot of time commenting on other users’ posts | 3.766 | 0.958 | |
Social networks importance (SNI) | SNI1 | Social networks are important for my professional life | 3.505 | 1.106 |
SNI2 | Social networks are important for my personal life | 3.559 | 1.096 | |
Social networks satisfaction (SNSa) | SNSa1 | Social networks bring professional satisfaction | 1.973 | 0.716 |
SNSa2 | Social networks bring personal satisfaction | 1.892 | 0.752 |
Private Activities | Public Activities | ||||
---|---|---|---|---|---|
Dimension | Look | Chat | Updates | Post | Comment |
Look | 1.000 | 0.146 | 0.237 * | 0.465 *** | 0.509 *** |
Chat | 0.146 | 1.000 | 0.324 *** | 0.170 | 0.109 |
Updates | 0.237 * | 0.324 *** | 1.000 | 0.379 *** | 0.292 ** |
Post | 0.465 *** | 0.170 | 0.379 *** | 1.000 | 0.519 *** |
Comment | 0.509 *** | 0.109 | 0.292 ** | 0.519 *** | 1.000 |
Dimension | FW | IW | TW | LW | YW |
---|---|---|---|---|---|
FP | 0.501 *** | −0.011 | 0.083 | −0.011 | 0.082 |
IP | −0.066 | 0.786 *** | −0.177 | −0.092 | 0.059 |
TP | 0.122 | −0.200* | 0.647 *** | 0.295 ** | 0.115 |
LP | −0.067 | −0.020 | 0.238 * | 0.755 *** | 0.120 |
YP | 0.004 | −0.160 | 0.063 | 0.233 * | 0.400 *** |
Dimension | FW | IW | TW | LW | YW | FP | IP | TP | LP | YP |
---|---|---|---|---|---|---|---|---|---|---|
FR | −0.325 *** | 0.082 | −0.237 * | −0.128 | −0.059 | −0.249 ** | 0.166 | −0.265 ** | −0.110 | 0.093 |
HR | −0.085 | −0.004 | −0.074 | −0.249 ** | −0.183 | −0.138 | 0.007 | −0.034 | −0.195 * | −0.203 * |
Dimension | SW | SP | IW | IP | Look | Updates | Post | Comment | Chat |
---|---|---|---|---|---|---|---|---|---|
FR | −0.115 | −0.025 | 0.092 | 0.075 | −0.162 | −0.198 * | −0.067 | −0.245 ** | −0.088 |
HR | −0.018 | −0.085 | 0.029 | 0.122 | 0.098 | −0.066 | 0.108 | −0.020 | −0.246 ** |
Private Activities | Public Activities | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dimension | SW | SP | IW | IP | Look | Chat | Updates | Post | Comment |
SW | 1.000 | 0.611 *** | −0.194 * | −0.278 ** | 0.072 | 0.114 | 0.072 | 0.252 ** | 0.233 * |
SP | 0.611 *** | 1.000 | −0.149 | −0.326 *** | 0.109 | 0.066 | 0.109 | 0.259 ** | 0.258 ** |
IW | −0.194 * | −0.149 | 1.000 | 0.713 *** | −0.164 | −0.242 * | −0.164 | −0.127 | 0.031 |
IP | −0.278 ** | −0.326 *** | 0.713 *** | 1.000 | −0.186 | −0.186 | −0.186 | −0.192 * | −0.225 * |
Latent Reflective Variable | Reflective Indicators | Outer Loadings | Cronbach’s Alpha | Composite Reliability | Average Variance Extracted (AVE) |
---|---|---|---|---|---|
Private activities on social networks (PRASN) | PRASN1 | 0.747 | 0.498 | 0.796 | 0.662 |
PRASN2 | 0.875 | ||||
Public activities on social networks (PUASN) | PUASN1 | 0.703 | 0.746 | 0.846 | 0.649 |
PUASN2 | 0.874 | ||||
PUASN3 | 0.830 | ||||
Social networks importance (SNI) | SNI1 | 0.887 | 0.821 | 0.915 | 0.844 |
SNI2 | 0.949 | ||||
Social networks satisfaction (SNSa) | SNSa1 | 0.914 | 0.822 | 0.918 | 0.849 |
SNSa2 | 0.929 |
PRASN | PUASN | SNI | SNSa | |
---|---|---|---|---|
Private activities on social networks (PRASN) | ||||
Public activities on social networks (PUASN) | 0.5704 | |||
Social networks importance (SNI) | 0.4367 | 0.1983 | ||
Social networks satisfaction (SNSa) | 0.2092 | 0.3383 | 0.3283 |
PRASN | PUASN | SNI | SNSa | |
---|---|---|---|---|
Private activities on social networks (PRASN) | 11,325 | 12,055 | ||
Public activities on social networks (PUASN) | 11,325 | 11,366 | ||
Social networks importance (SNI) | 10,888 | |||
Social networks satisfaction (SNSa) |
Effect | Deviation | T Statistics | P Values | Hypothesis | |
---|---|---|---|---|---|
H1: PUASN → SNI | −0.0757 | 0.1382 | 0.4416 | 0.6590 | Infirmed |
H2: PUASN → SNSa | 0.2612 | 0.0918 | 2.7897 | 0.0055 | Confirmed |
H3: PRASN → SNI | −0.2612 | 0.1186 | 2.1841 | 0.0294 | Confirmed |
H4: PRASN → SNSa | −0.0226 | 0.1161 | 0.2120 | 0.8322 | Infirmed |
H5: SNI → SNSa | −0.2577 | 0.0925 | 2.7465 | 0.0062 | Confirmed |
Indicator | PLS | LM | RMSE PLS < RMSE LM | MAE PLS < MAE LM | Predictive Power | |||
---|---|---|---|---|---|---|---|---|
RMSE | MAE | Q²_predict | RMSE | MAE | ||||
SNSa1 | 0.7186 | 0.4985 | 0.0134 | 0.7310 | 0.5122 | Yes | Yes | High |
SNSa2 | 0.7494 | 0.5398 | 0.0262 | 0.7619 | 0.5601 | Yes | Yes |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mican, D.; Sitar-Tăut, D.-A.; Mihuţ, I.-S. User Behavior on Online Social Networks: Relationships among Social Activities and Satisfaction. Symmetry 2020, 12, 1656. https://doi.org/10.3390/sym12101656
Mican D, Sitar-Tăut D-A, Mihuţ I-S. User Behavior on Online Social Networks: Relationships among Social Activities and Satisfaction. Symmetry. 2020; 12(10):1656. https://doi.org/10.3390/sym12101656
Chicago/Turabian StyleMican, Daniel, Dan-Andrei Sitar-Tăut, and Ioana-Sorina Mihuţ. 2020. "User Behavior on Online Social Networks: Relationships among Social Activities and Satisfaction" Symmetry 12, no. 10: 1656. https://doi.org/10.3390/sym12101656
APA StyleMican, D., Sitar-Tăut, D. -A., & Mihuţ, I. -S. (2020). User Behavior on Online Social Networks: Relationships among Social Activities and Satisfaction. Symmetry, 12(10), 1656. https://doi.org/10.3390/sym12101656