Asymmetry and Tightness of Lower Limb Muscles in Equestrian Athletes: Are They Predictors for Back Pain?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Subjects
2.3. Evaluators
2.4. Questionnaire
2.5. ROM-SPORT I Battery
2.6. Statistical Analysis
3. Results
4. Discussion
Practical Guidelines
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pugh, T.; Bolin, D. Overuse injuries in equestrian athletes. Overuse Inj. Equest. Athl. 2004, 3, 297–303. [Google Scholar] [CrossRef]
- Kraft, C.; Scharfstädt, A.; Yong, M.; Westhoff, B.; Urban, N.; Falkenhausen, M.; Pennekamp, P. Correlation of back pain and magnetic resonance imaging of the lumbar spine in elite horse vaulters. Sport. Sport. 2007, 21, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Kraft, C.N.; Pennekamp, P.H.; Becker, U.; Young, M.; Diedrich, O.; Lüring, C.; Von Falkenhausen, M. Magnetic resonance imaging findings of the lumbar spine in elite horseback riders: Correlations with Back pain, body mass index, trunk/leg-length coefficient, and riding discipline. Am. J. Sports Med. 2009, 37, 2205–2213. [Google Scholar] [CrossRef] [PubMed]
- Pilato, M.; Shifrin, S.; Bixby-Hammett, D. The equestrian as an athlete: A view into injuries and incidence rates. Equest. Med. Saf. Assoc. Newsl. 2007, 1, 5–7. [Google Scholar]
- Lewis, V.; Kennerley, R. A preliminary study to investigate the prevalence of pain in elite dressage riders during competition in the United Kingdom. Comp. Exerc. Physiol. 2017, 13, 259–263. [Google Scholar] [CrossRef]
- Moreno-Pérez, V.; López-Valenciano, A.; Ayala, F.; Fernandez-Fernandez, J.; Vera-Garcia, F. Comparison of hip extension and rotation ranges of motion in young elite tennis players with and without history of low back pain. J. Back Musculoskelet. Rehabil. 2019, 32, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Van Dillen, L.; Bloom, N.; Gombatto, S.; Susco, T. Hip rotation range of motion in people with and without low back pain who participate in rotation-related sports. Phys. Ther. Sport 2008, 9, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Vad, V.; Bhat, A.; Basrai, D.; Gebeh, A.; Aspergren, D.; Andrews, J. Low Back Pain in Professional Golfers: The Role of Associated Hip and Low Back Range-of-Motion Deficits. Am. J. Sports Med. 2004, 32, 494–497. [Google Scholar] [CrossRef]
- Cejudo, A.; Moreno-Alcaraz, V.J.; Izzo, R.; Santonja-Medina, F.; Sainz de Baranda, P. External and Total Hip Rotation Ranges of Motion Predispose to Low Back Pain in Elite Spanish Inline Hockey Players. Int. J. Environ. Res. Public Health 2020, 17, 4858. [Google Scholar] [CrossRef]
- Fousekis, K.; Tsepis, E.; Poulmedis, P.; Athanasopoulos, S.; Vagenas, G. Intrinsic risk factors of non-contact quadriceps and hamstring strains in soccer: A prospective study of 100 professional players. Br. J. Sports Med. 2011, 45, 709–714. [Google Scholar] [CrossRef] [Green Version]
- Cibulka, M.; Strube, M.; Meier, D.; Selsor, M.; Wheatley, C.; Wilson, N.; Irrgang, J. Symmetrical and asymmetrical hip rotation and its relationship to hip rotator muscle strength. Clin. Biomech. 2010, 25, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Ellenbecker, T.; Ellenbecker, G.; Roetert, E.; Silva, R.; Keuter, G.; Sperling, F. Descriptive profile of hip rotation range of motion in elite tennis players and professional baseball pitchers. Am. J. Sports Med. 2007, 35, 1371–1376. [Google Scholar] [CrossRef]
- Gandy, E.A.; Bondi, A.; Pigott, T.; Smith, G.; Mcdonald, S. Measurement of hip flexion and pelvic rotation in horse riders using IMUs Investigation of the use of inertial sensing equipment for the measurement of hip flexion and pelvic rotation in horse riders. Comp. Exerc. Physiol. 2018, 14, 99–110. [Google Scholar] [CrossRef]
- Harvey, J.; Tanner, S. Low back pain in young athletes. A practical approach. Sport. Med. 1991, 12, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Sadler, S.; Spink, M.; Ho, A.; De Jonge, X.; Chuter, V. Restriction in lateral bending range of motion, lumbar lordosis, and hamstring flexibility predicts the development of low back pain: A systematic review of prospective cohort studies. BMC Musculoskelet. Disord. 2017, 18, 179. [Google Scholar] [CrossRef] [Green Version]
- Sainz de Baranda, P.; Cejudo, A.; Moreno-Alcaraz, V.; Martinez-Romero, M.; Aparicio-Sarmiento, A.; Santonja, F. Sagittal spinal morphotype assessment in 8 to 15 years old Inline Hockey players. PeerJ 2020, 8, e8229. [Google Scholar] [CrossRef] [Green Version]
- Ginés-Díaz, A.; Martinez-Romero, M.; Cejudo, A.; Aparicio-Sarmiento, A.; Sainz de Baranda, P. Sagittal Spinal Morphotype Assessment in Dressage and Show Jumping Riders Physical. J. Sport Rehabil. 2019, 29, 533–540. [Google Scholar] [CrossRef]
- McHugh, M.; Connolly, D.; Eston, R.; Gleim, G. Exercise-induced muscle damage and potential mechanisms for the repeated bout effect. Sport. Med. 1999, 27, 157–170. [Google Scholar] [CrossRef]
- Hobbs, S.J.; Baxter, J.; Broom, L.; Rossell, L.-A.; Sinclair, J.; Clayton, H.M. Posture, Flexibility and Grip Strength in Horse Riders. J. Hum. Kinet. 2014, 42, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Ekstrand, J.; Gillquist, J. The frequency of muscle tightness and injuries in soccer players. Am. J. Sports Med. 1982, 10, 75–78. [Google Scholar] [CrossRef]
- L’hermette, M.; Polle, G.; Tourny-Chollet, C.; L’hermette, M. Hip passive range of motion and frequency of radiographic hip osteoarthritis in former elite handball players. Br. J. Sport. Med. 2006, 40, 45–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamura, S.; Wada, N.; Tazawa, M.; Sohmiya, M.; Ibe, Y.; Shimizu, T.; Usuda, S.; Shirakura, K. Injuries and disorders among young ice skaters: Relationship with generalized joint laxity and tightness. Open Access J. Sport. Med. 2014, 5, 191–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kibler, W.; McQueen, C. Fitness evaluations and fitness findings in competitive junior tennis players. Clin. Sports Med. 1988, 7, 403–416. [Google Scholar] [CrossRef]
- Witvrouw, E.; Danneels, L.; Asselman, P.; D’Have, T.; Cambier, D. Muscle flexibility as a risk factor for developing muscle injuries in male professional soccer players: A prospective study. Am. J. Sports Med. 2003, 31, 41–46. [Google Scholar] [CrossRef]
- Malliaras, P.; Cook, J.; Kent, P. Reduced ankle dorsiflexion range may increase the risk of patellar tendon injury among volleyball players. J. Sci. Med. Sport 2006, 9, 304–309. [Google Scholar] [CrossRef]
- Backman, L.; Danielson, P. Low range of ankle dorsiflexion predisposes for patellar tendinopathy in junior elite basketball players: A 1-year prospective study. Am. J. Sports Med. 2011, 39, 2626–2633. [Google Scholar] [CrossRef]
- Shah, S.; Testa, E.; Gammal, I.; Sullivan, J.; Gerland, R.; Goldstein, J.; Cohn, R. Hip Range of Motion: Which Plane of Motion Is More Predictive of Lower Extremity Injury in Elite Soccer Players? A Prospective Study. J. Surg. Orthop. Adv. 2019, 28, 201–208. [Google Scholar]
- Auvinet, B. Lombalgies et équitation. Synoviale Rhumatol. Sport. 1999, 83, 25–31. [Google Scholar]
- Humbert, C. L’équitation et Ses Conséquences sur le Rachis Lombaire du Cavalier: À Propos de 123 Observations; UHP-Université Henri Poincaré: Nancy, France, 2000. [Google Scholar]
- Keener, M.; Johnson, E.; Dai, B. The Effect of Stirrup Length on Impact Attenuation and Its Association with Muscle Strength. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- Mason, C.; Greig, M. Lumbar Spine Loading During Dressage Riding. J. Sport Rehabil. 2020, 29, 315–319. [Google Scholar] [CrossRef]
- Sainz De Baranda, P.; Cejudo, A.; Teresa Martínez-Romero, M.; Aparicio-Sarmiento, A.; Rodríguez-Ferrán, O.; Collazo-Diéguez, M.; Hurtado-Avilés, J.; Andújar, P.; Santonja-Medina, F. Sitting Posture, Sagittal Spinal Curvatures and Back Pain in 8 to 12-Year-Old Children from the Region of Murcia (Spain): ISQUIOS Programme. Int. J. Environ. Res. Public Heal. Artic. 2020, 17, 2578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedman, T.P.; Fernie, G.R. Mechanical response of the lumbar spine to seated postural loads. Spine 1997, 22, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Sainz de Baranda, P.; Andújar, P.; Collazo-Diéguez, M.; Pastor, A.; Santonja-Renedo, F.; Martínez-Romero, M.T.; Aparicio-Sarmiento, A.; Cejudo, A.; Rodríguez-Ferrán, O.; Santonja-Medina, F. Sagittal standing spinal alignment and back pain in 8 to 12-year-old children from the Region of Murcia, Spain: The ISQUIOS Program. J. Back Musculoskelet. Rehabil. 2020, 1–12. [Google Scholar] [CrossRef]
- Pizones, J.; García-Rey, E. Pelvic motion the key to understanding spine–hip interaction. EFORT Open Rev. 2020, 5, 522–533. [Google Scholar] [CrossRef]
- Quinn, S.; Bird, S. Influence of saddle type upon the incidence of lower back pain in equestrian riders. Br. J. Sports Med. 1996, 30, 140–144. [Google Scholar] [CrossRef] [Green Version]
- Santonja-Medina, F.; Santonja-Renedo, S.; Cejudo, A.; Ayala, F.; Ferrer, V.; Pastor, A.; Collazo-Diéguez, M.; Rodríguez-Ferrán, O.; Andújar, P.; Sainz de Baranda, P. Straight Leg Raise Test: Influence of Lumbosant© and Assistant Examiner in Hip, Pelvis Tilt and Lumbar Lordosis. Symmetry 2020, 12, 927. [Google Scholar] [CrossRef]
- Sainz de Baranda, P.; Santonja-Medina, F.; Rodríguez-Iniesta, M. Tiempo de entrenamiento y plano sagital del raquis en gimnastas de trampolín. Rev. Int. Med. Ciencias Act. Física Deport. 2010, 10, 521–536. [Google Scholar]
- Trompeter, K.; Fett, D.; Platen, P. Prevalence of Back Pain in Sports: A Systematic Review of the Literature. Sport. Med. 2017, 47, 1183–1207. [Google Scholar] [CrossRef] [Green Version]
- Cejudo, A.; Sainz de Baranda, P.; Ayala, F.; Santonja, F. Test-retest reliability of seven common clinical tests for assessing lower extremity muscle flexibility in futsal and handball players. Phys. Ther. Sport 2015, 16, 107–113. [Google Scholar] [CrossRef]
- Cejudo, A.; Moreno-Alcaraz, V.J.; Croix, M.D.S.; Santonja-Medina, F.; de Baranda, P.S. Lower-Limb Flexibility Profile Analysis in Youth Competitive Inline Hockey Players. Int. J. Environ. Res. Public Health 2020, 17, 4338. [Google Scholar] [CrossRef]
- Cejudo, A. El perfil óptimo de flexibilidad en jóvenes jugadores de fútbol durante su periodo sensible del desarrollo físico. Batería ROM-SPORT. JUMP 2020, 2, 16–25. [Google Scholar] [CrossRef]
- Cejudo, A.; Ayala, F.; Sainz de Baranda, P.; Santonja, F. Reliability of two methods of clinical examination of the flexibility of the hip adductor muscles. Int. J. Sports Phys. Ther. 2015, 10, 976–983. [Google Scholar] [PubMed]
- Enwemeka, C. Radiographic verification of knee goniometry. Scand. J. Rehabil. Med. 1986, 18, 47–49. [Google Scholar]
- Gogia, P.; Braatz, J.; Rose, S.; Norton, B. Reliability and Validity of Goniometric Measurements at the Knee. Phys. Ther. 1987, 67, 192–195. [Google Scholar] [CrossRef]
- Greene, W.; Heckman, J. Clinical Assessment of Joint Movement; Edika Med.: Barcelona, Spain, 1997. [Google Scholar]
- Gerhardt, J.; Cocchiarella, L.; Lea, R. The Practical Guide to Range of Motion Assessment; American Medical Association: Chicago, IL, USA, 2002. [Google Scholar]
- Norkin, C.; White, D. Measurement of Joint Motion: A Guide to Goniometry; FA Davis: Philadelphia, PA, USA, 2016; ISBN 9780803620667. [Google Scholar]
- Magee, D. Orthopedic Physical Assessment; Elsevier Health Sciences: Philadelphia, PA, USA, 2013. [Google Scholar]
- Taylor, K.; Sheppard, J.; Hamilton, L.; Plummer, N. Negative effect of static stretching restored when combined with a sport specific warm-up component. J. Sci. Med. Sport 2009, 12, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sport. Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, W. How to interpret changes in an athletic performance test. Sport Sci. 2004, 8, 1–7. [Google Scholar]
- Fagerland, M.; Hosmer, D. A generalized Hosmer-Lemeshow goodness-of-fit test for multinomial logistic regression models. Stata J. 2012, 12, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Coombes, B.; Bisset, L.; Vicenzino, B. Efficacy and safety of corticosteroid injections and other injections for management of tendinopathy: A systematic review of randomised controlled trials. Lancet 2010, 376, 1751–1767. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Cortes, C.; Mohri, M. AUC Optimization vs. Error Rate Minimization. Adv. Neural Inf. Process. Syst. 2004, 16, 313–320. [Google Scholar]
- Kapandji, A. Fisiología Articular T2: Miembro Inferior; Médica Panamericana: Madrid, Spain, 2007. [Google Scholar]
- Peterson, F.; Kendall, E.; Geise, P. Kendall’s Músculos. Pruebas, Funciones y Dolor Postural; Marbán: Madrid, Spain, 2005. [Google Scholar]
- Clarkson, H. Proceso Evaluativo Musculoesquelético: Amplitud del Movimiento Articular y Test Manual de Fuerza Muscular; Paidotribo: Barcelona, Spain, 2003. [Google Scholar]
- Nourbakhsh, M.R.; Arab, A.M. Relationship between mechanical factors and incidence of low back pain. J. Orthop. Sports Phys. Ther. 2002, 32, 447–460. [Google Scholar] [CrossRef]
- Purcell, L.; Micheli, L. Low back pain in young athletes. Sports Health 2009, 1, 212–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadler, S.; Malanga, G.; Bartoli, L.; Feinberg, J.; Prybicien, M.; Deprince, M. Hip muscle imbalance and low back pain in athletes: Influence of core strengthening. Med. Sci. Sport. Exerc. 2002, 34, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Cejudo Palomo, A.; San Cirilo-Soriano, B.; Robles Palazón, F.J.; Sainz de Baranda, P. Análisis del perfil de flexibilidad en jóvenes taekwondistas. Rev. Artes Marciales Asiáticas 2018, 11, 30–33. [Google Scholar] [CrossRef]
- Cejudo, A.; Moreno-Alcaraz, V.J.; Izzo, R.; Robles-Palazón, F.J.; Sainz de Baranda, P.; Santonja-Medina, F. Flexibility in Spanish Elite Inline Hockey Players: Profile, Sex, Tightness and Asymmetry. Int. J. Environ. Res. Public Health 2020, 17, 3295. [Google Scholar] [CrossRef] [PubMed]
- Sainz de Baranda, P.; Cejudo, A.; Ayala, F.; Santonja, F. Perfil óptimo de flexibilidad del miembro inferior en jugadoras de fútbol sala. Rev. Int. Med. Cienc. Act. Fis. Deport. 2015, 15, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Cejudo, A.; Robles-Palazón, F.; Sainz De Baranda, P. Fútbol sala de élite: Diferencias de flexibilidad según sexo. E Balonmano.com Rev. Cienc. Deport. 2019, 15, 37–48. [Google Scholar]
- Cejudo, A.; Sainz de Baranda, P.; Ayala, F.; Santonja, F. Clasificación de los valores de rango de movimiento de la extremidad inferior en jugadores de fútbol sala. Sport TK Rev. Euroam. Cienc. Deport. 2017, 6, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Cejudo, A.; Robles-Palazón, F.; Ayala, F.; De Ste Croix, M.; Ortega-Toro, E.; Santonja, F.; Sainz de Baranda, P. Age-related differences in flexibility in soccer players 8-19 years old. PeerJ 2019, 2019, e6236. [Google Scholar] [CrossRef]
- MacDonald, J. Back Pain in the Adolescent Athlete. Pediatr. Ann. 2007, 36, 703–712. [Google Scholar] [CrossRef]
- Kukadia, H.A.; Malshikare, A.; Palekar, T.J. Effect of Passive Stretching v/s Myofascial Release in Improving Piriformis Flexibility in Females–A Comparative Study. Indian J. Physiother. Occup. Ther. 2019, 13, 457. [Google Scholar] [CrossRef]
- Palmer, M.; Epler, M. Fundamentos de Las Técnicas de Evaluación Musculoesquelética; Paidotribo: Barcelona, Spain, 2002. [Google Scholar]
- Gerhardt, J. Documentation of Joint Motion; Isomed: Portland, Oregon, 1994. [Google Scholar]
- Kolber, M.; Fiebert, I. Addressing flexibility of the rectus femoris in the athlete with low back pain. Strength Cond. J. 2005, 27, 66–73. [Google Scholar] [CrossRef]
- Marschall, M.; Harrington, A.C.; Steele, J.R. Effect of work station design on sitting posture in young children. Ergonomics 1995, 38, 1932–1940. [Google Scholar] [CrossRef]
- Kibler, W. Strength and flexibility findings in anterior knee pain syndrome in athletes. Am. J. Sport. Med. 1987, 15, 49. [Google Scholar]
- Duffey, M.; Martin, D.; Cannon, D.; Craven, T. Etiologic factors associated with anterior knee pain in distance runners. Med. Sci. Sports Exerc. 2000, 32, 1825–1832. [Google Scholar] [CrossRef]
- Scholtes, S.; Gombatto, S.; Van Dillen, L. Differences in lumbopelvic motion between people with and people without low back pain during two lower limb movement tests. Clin. Biomech. 2009, 24, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Feldman, D.; Shrier, I.; Rossignol, M.; Abenhaim, L. Risk factors for the development of low back pain in adolescence. Am. J. Epidemiol. 2001, 154, 30–36. [Google Scholar] [CrossRef]
- Kanchanomai, S.; Janwantanakul, P.; Pensri, P.; Jiamjarasrangsi, W. A prospective study of incidence and risk factors for the onset and persistence of low back pain in Thai university students. Asia Pac. J. Public Health 2015, 27, NP106–NP115. [Google Scholar] [CrossRef]
- Byzova, A.; Roozbahani, H.; Handroos, H.; Hakansson, N.; Lankarani, H.M. Monitoring of the human body and brain behavior using optical motion capture system and EEG utilizing horseback riding simulator: An extended case study. J. Phys. Ther. Sci. 2020, 32, 85–91. [Google Scholar] [CrossRef]
- Nicholson, N. Biomechanical Riding & Dressage: A Rider’s Atlas; Zip Publishing: Columbus, Ohio, 2006. [Google Scholar]
- Symes, D.; Ellis, R. A preliminary study into rider asymmetry within equitation. Vet. J. 2009, 181, 34–37. [Google Scholar] [CrossRef]
- Gombatto, S.; Collins, D.; Sahrmann, S.; Engsberg, J.; Van Dillen, L. Gender differences in pattern of hip and lumbopelvic rotation in people with low back pain. Clin. Biomech. 2006, 21, 263–271. [Google Scholar] [CrossRef]
- Münz, A.; Eckardt, F.; Witte, K. Horse-rider interaction in dressage riding. Hum. Mov. Sci. 2014, 33, 227–237. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Variable | Male (n = 15) | Female (n = 28) | p-Value | Cohen’s d (Qualitative Inference) | Total (n = 43) |
---|---|---|---|---|---|
Age (years) | 13.7 ± 2.2 | 14.4 ± 2.1 | 0.258 | −0.3279 (Small) | 14.2 ± 2.1 |
Stature (cm) | 160.4 ± 14.5 | 161.1 ± 7.8 | 0.740 | −0.0662 (Small) | 160.9 ± 10.4 |
Body mass (kg) | 54.8 ± 13.0 | 52.5 ± 10.0 | 0.460 | 0.2069 (Small) | 53.3 ± 11.0 |
Body mass index (kg/m2) | 21.0 ± 2.5 | 20.1 ± 3.1 | 0.203 | 0.3094 (Small) | 20.4 ± 2.9 |
Body fat (%) | 20.7 ± 4.6 | 24.9 ± 6.5 | 0.068 | −0.7094 (Small) | 23.5 ± 6.2 |
Riding experience (years) | 6.5 ± 2.3 | 6.7 ± 2.9 | 0.671 | −0.0738 (Small) | 6.7 ± 2.7 |
Hours of training per week (h) | 8.4 ± 4.9 | 7.4 ± 5.8 | 0.317 | 0.1815 (Small) | 7.7 ± 5.5 |
Training hours last 12 month (h) | 402.5 ± 235.6 | 357.5 ± 279.5 | 0.317 | 0.1696 (Small) | 371.4 ± 264.6 |
Variable | Dominant Side | Non-Dominant Side | p-Value | Qualitative Inference (Cohen’s d) |
---|---|---|---|---|
HE (iliopsoas) (°) | 12.4 ± 5.4 | 11.1 ± 4.9 | 0.010 | 0.252 (Small) |
HAD-HF (abductors) (°) | 26.5 ± 3.9 | 27.1 ± 3.4 | 0.145 | −0.164 (Small) |
DTRE (gastrocnemius) (°) | 34.1 ± 4.4 | 33.6 ± 4.8 | 0.281 | 0.108 (Small) |
DFRF (soleus) (°) | 39.1 ± 6.2 | 39.5 ± 5.6 | 0.513 | −0.067 (Small) |
HAB (adductors) (°) | 37.7 ± 3.9 | 36.3 ± 3.7 | 0.008 | 0.368 (Small) |
HIR (external rotators) (°) | 53.8 ± 9.3 | 51.4 ± 8.2 | 0.001 | 0.273 (Small) |
HER (internal rotators) (°) | 63.0 ± 7.3 | 63.7 ± 6.8 | 0.273 | −0.099 (Small) |
HTR (hip rotators) (°) | 116.8 ± 12.7 | 115.1 ± 11.1 | 0.091 | 0.142 (Small) |
HAB-HF (monoarticular adductors) (°) | 63.3 ± 8.9 | 61.9 ± 7.9 | 0.017 | 0.166 (Small) |
HF-KE (hamstring) (°) | 69.7 ± 7.0 | 69.6 ± 7.3 | 0.819 | 0.014 (Small) |
KF (quadriceps) (°) | 127.7 ± 10.5 | 127.0 ± 10.2 | 0.204 | 0.067 (Small) |
HF-KF (gluteus maximus) (°) | 135.3 ± 6.0 | 136.2 ± 5.4 | 0.192 | −0.1577 (Small) |
Variable | EA-A † (n = 13) | EA-LBP † (n = 29) | p-Value | Effect Sizes Hedges’ g (Qualitative Inference) |
---|---|---|---|---|
Age (years) | 14.2 ± 1.6 | 14.3 ± 2.3 | 0.840 | −0.047 (Small) |
Body mass (kg) | 52.9 ± 7.6 | 53.6 ± 12.5 | 0.775 | −0.062 (Small) |
Height (cm) | 162.2 ± 8.7 | 160.8 ± 11.0 | 0.881 | 0.135 (Small) |
BMI (kg/m2) | 20.0 ± 1.7 | 20.5 ± 3.3 | 0.615 | −0.171 (Small) |
Body-fat (%) | 11.9 ± 3.7 | 13.0 ± 6.1 | 0.626 | −0.200 (Small) |
Years of experience (y) | 6.9 ± 2.5 | 6.6 ± 2.8 | 0.604 | 0.111 (Small) |
Training hours per week (h) | 10.1 ± 7.1 | 6.8 ± 4.6 | 0.148 | 0.603 (Moderate) |
Training hours last 12 month (h) | 484.0 ± 338.5 | 326.4 ± 219.6 | 0.148 | 0.605 (Moderate) |
HE (iliopsoas) (°) | 13.5 ± 5.3 | 10.7 ± 4.6 | 0.067 | 0.580 (Small) |
HAD-HF (abductors) (°) | 28.9 ± 3.3 | 26.0 ± 3.0 | 0.015 | 0.937 (Moderate) |
DTRE (gastrocnemius) (°) | 35.5 ± 4.7 | 33.4 ± 3.8 | 0.224 | 0.513 (Small) |
DTRF (soleus) (°) | 41.9 ± 5.0 | 38.2 ± 5.9 | 0.062 | 0.655 (Moderate) |
HAB (adductors) (°) | 38.2 ± 2.5 | 36.4 ± 3.8 | 0.125 | 0.520 (Small) |
HIR (external rotators) (°) | 54.0 ± 7.1 | 52.2 ± 9.3 | 0.376 | 0.207 (Small) |
HER (internal rotators) (°) | 64.8 ± 6.0 | 63.2 ± 6.8 | 0.533 | 0.243 (Small) |
HTR (hip rotators) (°) | 118.8 ± 10.2 | 115.4 ± 12.0 | 0.270 | 0.296 (Small) |
HAB-HF (monoarticular adductors) (°) | 66.0 ± 7.9 | 61.4 ± 8.2 | 0.130 | 0.567 (Small) |
HF-KE (hamstring) (°) | 70.6 ± 6.8 | 69.0 ± 7.0 | 0.512 | 0.231 (Small) |
KF (quadriceps) (°) | 132.2 ± 7.7 | 124.4 ± 9.5 | 0.025 | 0.866 (Moderate) |
HF-KF (gluteus maximus) (°) | 137.5 ± 4.3 | 135.0 ± 5.8 | 0.176 | 0.463 (Small) |
Risk Factors | History LBP Last 1-Year | Odd Ratio (Relative Risk) | Standard Error | 95% Confidence Interval | p-Value | |
---|---|---|---|---|---|---|
HAD-HF | EA-A | EA-LBP | 1.347 Medium | 0.123 | 0.583 to 0.944 | 0.015 |
>26° | 44% (11/25) | 56% (14/25) | ||||
≤26° | 12% (2/17) | 88% (15/17) | ||||
KF | EA-A | EA-LBP | 1.109 Small | 0.046 | 0.823 to 0.986 | 0.023 |
>128° | 48% (10/21) | 52% (11/21) | ||||
≤128° | 14% (3/21) | 86% (18/21) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cejudo, A.; Ginés-Díaz, A.; Sainz de Baranda, P. Asymmetry and Tightness of Lower Limb Muscles in Equestrian Athletes: Are They Predictors for Back Pain? Symmetry 2020, 12, 1679. https://doi.org/10.3390/sym12101679
Cejudo A, Ginés-Díaz A, Sainz de Baranda P. Asymmetry and Tightness of Lower Limb Muscles in Equestrian Athletes: Are They Predictors for Back Pain? Symmetry. 2020; 12(10):1679. https://doi.org/10.3390/sym12101679
Chicago/Turabian StyleCejudo, Antonio, Angélica Ginés-Díaz, and Pilar Sainz de Baranda. 2020. "Asymmetry and Tightness of Lower Limb Muscles in Equestrian Athletes: Are They Predictors for Back Pain?" Symmetry 12, no. 10: 1679. https://doi.org/10.3390/sym12101679
APA StyleCejudo, A., Ginés-Díaz, A., & Sainz de Baranda, P. (2020). Asymmetry and Tightness of Lower Limb Muscles in Equestrian Athletes: Are They Predictors for Back Pain? Symmetry, 12(10), 1679. https://doi.org/10.3390/sym12101679