Note on the Type 2 Degenerate Multi-Poly-Euler Polynomials
Abstract
:1. Introduction and Preliminaries
- Section 2 includes several known definitions and notations.
- In Section 3, we consider a novel class of degenerate multi-poly-Euler polynomials and numbers and investigate their diverse properties and relations.
- The last section outlines finding gains and the conclusions in this work and mentions recommendations for future studies.
2. Definitions
3. Type 2 Degenerate Multi-Poly-Euler Polynomials
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carlitz, L. Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 1979, 15, 51–88. [Google Scholar]
- Carlitz, L. A degenerate Staudt-Clausen theorem. Arch. Math. 1956, 7, 28–33. [Google Scholar] [CrossRef]
- Cheon, G.-S. A note on the Bernoulli and Euler polynomials. Appl. Math. Lett. 2003, 16, 365–368. [Google Scholar] [CrossRef] [Green Version]
- Corcino, R.B. Multi poly-Bernoulli and multi poly-Euler polynomials. In Applied Mathematical Analysis: Theory, Methods, and Applications; Dutta, H., Peters, J., Eds.; Studies in Systems, Decision and Control; Springer: Cham, Switzerland, 2020; Volume 177. [Google Scholar]
- Duran, U.; Acikgoz, M.; Araci, S. Construction of the type 2 poly-Frobenius-Genocchi polynomials with their certain applications. Adv. Differ. Equ. 2020, 2020, 432. [Google Scholar] [CrossRef]
- Duran, U.; Acikgoz, M. On degenerate truncated special polynomials. Mathematics 2020, 8, 144. [Google Scholar] [CrossRef] [Green Version]
- Duran, U.; Acikgoz, M. A new approach to the Poisson distribution: Degenerate Poisson distribution. J. Inequal. Spec. Funct. 2020, 11, 1–11. [Google Scholar]
- Duran, U.; Sadjang, P.N. On Gould-Hopper-based fully degenerate poly-Bernoulli polynomials with a q-parameter. Mathematics 2019, 7, 121. [Google Scholar] [CrossRef] [Green Version]
- Eastham, M.S.P. On polylogarithms. Proc. Glasgow Math. Assoc. 1964, 6, 169–171. [Google Scholar] [CrossRef] [Green Version]
- Jolany, H.; Corcino, R.B.; Komatsu, T. More properties on multi-poly-Euler polynomials. Bol. Soc. Mat. Mex. 2015, 21, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Hamahata, Y. Poly-Euler polynomials and Arakawa-Kaneko type zeta functions. Funct. Approx. Comment. Math. 2014, 51, 7–22. [Google Scholar] [CrossRef]
- Khan, W.A.; Ghayasuddin, M.; Shadab, M. Multiple poly-Bernoulli polynomials of the second kind associated with Hermite polynomials. Fasc. Math. 2017, 58, 97–112. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Kim, T. A note on polyexponential and unipoly functions. Russ. J. Math. Phys. 2019, 26, 40–49. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Kwon, J.; Lee, H. Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials. Adv. Differ. Equ. 2020, 168. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. A note on a new type of degenerate Bernoulli numbers. Russ. J. Math. Phys. 2020, 27, 227–235. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Kwon, J.; Kim, H.Y. A note on degenerate Genocchi and poly-Genocchi numbers and polynomials. J. Ineq. Appl. 2020, 110. [Google Scholar] [CrossRef] [Green Version]
- Kim, T. A note on degenerate Stirling polynomials of the second kind. Proc. Jangjeon Math. Soc. 2017, 20, 319–331. [Google Scholar]
- Kim, T.; Kim, D.S. Degenerate polyexponential functions and degenerate Bell polynomials. J. Math. Anal. Appl. 2020, 487, 124017. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.S. A note on degenerate multi-poly-Bernoulli numbers and polynomials. arXiv 2020, arXiv:2005.07319v1. [Google Scholar]
- Kim, T.; Kim, D.S.; Kim, H.-Y.; Kwon, J. A note on degenerate multi-poly-Genocchi polynomials. Adv. Stud. Contemp. Math. 2020, 30, 447–454. [Google Scholar]
- Kim, T.; Khan, W.A.; Sharma, S.K.; Ghayasuddin, M. A note on parametric kinds of the degenerate poly-Bernoulli and poly-Genocchi polynomials. Symmetry 2020, 12, 614. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. Degenerate Laplace transform and degenerate gamma function. Russ. J. Math. Phys. 2017, 24, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.; Kim, H.-Y.; Lee, H.; Jang, L.-C. Degenerate poly-Bernoulli polynomials arising from degenerate polylogarithm. Adv. Differ. Equ. 2020, 444. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. Note on the degenerate gamma function. Russ. J. Math. Phys. 2020, 27, 352–358. [Google Scholar] [CrossRef]
- Lee, D.S.; Kim, H.-Y.; Jang, L.-C. Type 2 degenerate poly-Euler polynomials. Symmetry 2020, 12, 1011. [Google Scholar] [CrossRef]
- Qi, F.; Kim, D.S.; Kim, T. Multiple poly-Bernoulli polynomials of the second kind. Adv. Stud. Contemp. Math. 2015, 25, 1–7. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, W.A.; Acikgoz, M.; Duran, U. Note on the Type 2 Degenerate Multi-Poly-Euler Polynomials. Symmetry 2020, 12, 1691. https://doi.org/10.3390/sym12101691
Khan WA, Acikgoz M, Duran U. Note on the Type 2 Degenerate Multi-Poly-Euler Polynomials. Symmetry. 2020; 12(10):1691. https://doi.org/10.3390/sym12101691
Chicago/Turabian StyleKhan, Waseem Ahmad, Mehmet Acikgoz, and Ugur Duran. 2020. "Note on the Type 2 Degenerate Multi-Poly-Euler Polynomials" Symmetry 12, no. 10: 1691. https://doi.org/10.3390/sym12101691
APA StyleKhan, W. A., Acikgoz, M., & Duran, U. (2020). Note on the Type 2 Degenerate Multi-Poly-Euler Polynomials. Symmetry, 12(10), 1691. https://doi.org/10.3390/sym12101691