An Integral Operational Matrix of Fractional-Order Chelyshkov Functions and Its Applications
Abstract
:1. Introduction
2. Preliminaries
2.1. Fractional Calculus
2.2. Fractional Chelyshkov Functions
3. Function Approximation and Error Estimation
4. The Fractional Integration Operational Matrix of FCHFs
5. Solution Method
6. Illustrative Examples
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cen, Z.D.; Le, A.B.; Xu, A.M. A robust numerical method for a fractional differential equation. Appl. Math. Comput. 2017, 315, 445–452. [Google Scholar] [CrossRef]
- El-Kalla, I.L. Error estimate of the series solution to a class of nonlinear fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1408–1413. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A. Nonlinear functional differential equations of arbitrary orders. Nonlinear Anal. 1998, 33, 181–186. [Google Scholar] [CrossRef]
- Sun, H.G.; Chen, W.; Sheng, H.; Chen, Y.Q. On mean square displacement behaviors of anomalous diffusions with variable and random order. Phys. Lett. A 2010, 374, 906–910. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: San Diego, CA, USA, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Momani, S.; Odibat, Z. Generalized differential transform method for solving a space and time-fractional diffusion-wave equation. Phys. Lett. A 2007, 370, 379–387. [Google Scholar] [CrossRef]
- Hosseini, M.M. Adomian decomposition method for solution of nonlinear differential algebraic equations. Appl. Math. Comput. 2006, 181, 1737–1744. [Google Scholar] [CrossRef]
- Odibat, Z.; Momani, S.; Xu, H. A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Appl. Math. Model. 2010, 34, 593–600. [Google Scholar] [CrossRef]
- Hashim, I.; Abdulaziz, O.; Momani, S. Homotopy analysis method for fractional IVPs. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 674–684. [Google Scholar] [CrossRef]
- Yang, S.; Xiao, A.; Su, H. Convergence of the variational iteration method for solving multi-order fractional differential equations. Comput. Math. Appl. 2010, 60, 2871–2879. [Google Scholar] [CrossRef] [Green Version]
- Ervin, V.J.; Roop, J.P. Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 2006, 22, 558–576. [Google Scholar] [CrossRef] [Green Version]
- Rawashdeh, E.A. Numerical solution of fractional integro-differential equations by collocation method. Appl. Math. Comput. 2006, 176, 1–6. [Google Scholar] [CrossRef]
- Yi, M.X.; Chen, Y.M. Haar wavelet operational matrix method for solving fractional partial differential equations. Comput. Model. Eng. Sci. 2012, 88, 229–244. [Google Scholar]
- Hossein, J.; Haleh, T.; Dumitru, B. A numerical approach for fractional order Riccati differential equation using B-Spline operational matrix. Fract. Calc. Appl. Anal. 2015, 18, 387–399. [Google Scholar]
- Doha, E.H.; Bhrawy, A.H.; Ezz-Eldien, S.S. A new Jacobi operational matrix: An application for solving fractional differential equations. Appl. Math. Model. 2012, 36, 4931–4943. [Google Scholar] [CrossRef]
- Bhrawy, A.H.; Alofi, A.S. The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl. Math. Lett. 2013, 26, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A. Spectral Methods in Fluid Dynamics; Springer: New York, NY, USA, 1988. [Google Scholar]
- Mai-Duy, N. An effective spectral collocation method for the direct solution of high-order ODEs. Commun. Numer. Meth. Eng. 2006, 22, 627–642. [Google Scholar] [CrossRef] [Green Version]
- Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A. Spectral Methods: Fundamentals in Single Domains; Springer: New York, NY, USA, 2006. [Google Scholar]
- Gheorghiu, C.I. Spectral Methods for Differential Problems; T. Popoviciu Institute of Numerical Analysis: Cluj-Napoca, Romaina, 2007. [Google Scholar]
- Saadatmandia, A.; Dehghanb, M. A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 2010, 59, 1326–1336. [Google Scholar] [CrossRef] [Green Version]
- Li, Y. Solving a nonlinear fractional differential equation using Chebyshev wavelets. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2284–2292. [Google Scholar] [CrossRef]
- Behroozifar, M.; Ahmadpour, F. Comparative study on solving fractional differential equations via shifted Jacobi collocation method. Bull. Iranian Math. Soc. 2017, 43, 535–560. [Google Scholar]
- Li, Y.; Sun, N. Numerical solution of fractional differential equations using the generalized block pulse operational matrix. Comput. Math. Appl. 2011, 62, 1046–1054. [Google Scholar] [CrossRef] [Green Version]
- Chelyshkov, V.S. Alternative orthogonal polynomials and quadratures. Electron. Trans. Numer. Anal. 2006, 25, 17–26. [Google Scholar]
- Rasty, M.; Hadizadeh, M. A Product integration approach on new orthogonal polynomials for nonlinear weakly singular integral equations. Acta Appl. Math. 2010, 109, 861–873. [Google Scholar] [CrossRef]
- Shali, J.A.; Darania, P.; Akbarfam, A.A. Collocation method for nonlinear Volterra–Fredholm integral equations. J. Appl. Sci. 2012, 2, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Oguza, C.; Sezer, M. Chelyshkov collocation method for a class ofmixed functional integro-differential equations. Appl. Math. Comput. 2015, 259, 943–954. [Google Scholar]
- Bazm, S.; Hosseini, A. Numerical solution of nonlinear integral equations using alternative Legendre polynomials. J. Appl. Math. Comput. 2018, 56, 25–51. [Google Scholar] [CrossRef]
- Talaei, Y.; Asgari, M. An operational matrix based on Chelyshkov polynomials for solving multi-order fractional differential equations. Neural Comput. Appl. 2018, 30, 1369–1379. [Google Scholar] [CrossRef]
- Meng, Z.; Yi, M.; Huang, J.; Song, L. Numerical solutions of nonlinear fractional differential equations by alternative Legendre polynomials. Appl. Math. Comput. 2018, 336, 454–464. [Google Scholar] [CrossRef]
- Talaei, Y. Chelyshkov collocation approach for solving linear weakly singular Volterra integral equations. J. Appl. Math. Comput. 2019, 60, 201–222. [Google Scholar] [CrossRef]
- Kazem, S.; Abbasbandy, S.; Kumar, S. Fractional-order Legendre functions for solving fractional-order differential equations. Appl. Math. Model. 2013, 37, 5498–5510. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations, Lectures Notes in Mathematics; Springer: Berlin, Germany, 2010. [Google Scholar]
- Odibat, Z.M.; Shawagfeh, N.T. Generalized Taylor’s formula. Appl. Math. Comput. 2007, 186, 286–293. [Google Scholar] [CrossRef]
- Miller, K.; Ross, B. An Introduction to the Fractional Calaulus and Fractional Differential Equations; John Wiley & Sons Inc.: New York, NY, USA, 1993. [Google Scholar]
- Darani, M.A.; Saadatmandi, A. The operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications. Comput. Methods Differ. Equ. 2017, 5, 67–87. [Google Scholar]
- Lakestani, M.; Dehghan, M.; Irandoust-pakchin, S. The construction of operational matrix of fractional derivatives using B-spline functions. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1149–1162. [Google Scholar] [CrossRef]
- Baleanu, D.; Bhrawy, A.H.; Taha, T.M. A modified generalized Laguerre spectral method for fractional differential equations on the half line. Abstr. Appl. Anal. 2013, 2013, 413529. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yi, M.; Yu, C. Error analysis for numerical solution of fractional differential equation by Haar wavelets method. J. Comput. Sci. 2012, 3, 367–373. [Google Scholar] [CrossRef]
- Jafari, H.; Yousefi, S.A. Application of Legendre wavelets for solving fractional differential equations. Comput. Math. Appl. 2011, 62, 1038–1045. [Google Scholar] [CrossRef] [Green Version]
n | Our Method | Talaei’s [31] | |||
---|---|---|---|---|---|
4 | 1.0 | 3.82 | 3.81 | 1.21 | 5.92 |
8 | 0.5 | 1.18 | 4.06 | 5.80 | 2.50 |
10 | 0.25 | 0.0 | 0.0 | – | – |
13 | 0.25 | 0.0 | 0.0 | – | – |
16 | 0.25 | 8.13 | 5.36 | 2.45 | 9.89 |
20 | 0.25 | 1.78 | 0.0 | 8.59 | 3.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Sharif, M.S.; Ahmed, A.I.; Salim, M.S. An Integral Operational Matrix of Fractional-Order Chelyshkov Functions and Its Applications. Symmetry 2020, 12, 1755. https://doi.org/10.3390/sym12111755
Al-Sharif MS, Ahmed AI, Salim MS. An Integral Operational Matrix of Fractional-Order Chelyshkov Functions and Its Applications. Symmetry. 2020; 12(11):1755. https://doi.org/10.3390/sym12111755
Chicago/Turabian StyleAl-Sharif, M. S., A. I. Ahmed, and M. S. Salim. 2020. "An Integral Operational Matrix of Fractional-Order Chelyshkov Functions and Its Applications" Symmetry 12, no. 11: 1755. https://doi.org/10.3390/sym12111755
APA StyleAl-Sharif, M. S., Ahmed, A. I., & Salim, M. S. (2020). An Integral Operational Matrix of Fractional-Order Chelyshkov Functions and Its Applications. Symmetry, 12(11), 1755. https://doi.org/10.3390/sym12111755