A Note on Generalized q-Difference Equations and Their Applications Involving q-Hypergeometric Functions
Abstract
:1. Introduction, Definitions and Preliminaries
- (I)
- If satisfies the following difference equation:
- (II)
- If satisfies the following difference equation:
2. A Set of Formal Generalizations of the q-Binomial Theorem
3. Two Generalizations of the q-Chu-Vandermonde Summation Formula
4. New Generalizations of the Andrews-Askey Integral
5. Concluding Remarks and Observations
Author Contributions
Funding
Conflicts of Interest
References
- Gasper, G.; Rahman, M. Basic Hypergeometric Series (with a Foreword by Richard Askey), Encyclopedia of Mathematics and Its Applications, 2nd ed.; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 2004; Volume 96. [Google Scholar]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1966. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Ellis Horwood Limited: Chichester, UK, 1985. [Google Scholar]
- Koekock, R.; Swarttouw, R.F. The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its q-Analogue; Report No. 98-17; Delft University of Technology: Delft, The Netherlands, 1998. [Google Scholar]
- Srivastava, H.M. Certain q-polynomial expansions for functions of several variables. I. IMA J. Appl. Math. 1983, 30, 315–323. [Google Scholar] [CrossRef]
- Srivastava, H.M. Certain q-polynomial expansions for functions of several variables. II. IMA J. Appl. Math. 1984, 33, 205–209. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Morozov, V.N. Penetration of nonstationary ionospheric electric fields into lower atmospheric layers in the global electric circuit model. Geomagnet. Aeronom. 2018, 58, 113–118. [Google Scholar] [CrossRef]
- Suzuki, A.T. Correspondence between the one-loop three-point vertex and the Y and Δ electric resistor networks. Canad. J. Phys. 2014, 92, 131–135. [Google Scholar] [CrossRef]
- Di Barba, P.; Fattorusso, L.; Versaci, M. Electrostatic field in terms of geometric curvature in membrane MEMS devices. Commun. Appl. Industr. Math. 2017, 8, 165–184. [Google Scholar] [CrossRef] [Green Version]
- Włodarczyk, M.; Zawadzki, A. The application of hypergeometric functions to computing fractional order derivatives of sinusoidal functions. Bull. Polish Acad. Sci. Tech. Sci. 2016, 64, 243–248. [Google Scholar] [CrossRef]
- Chen, W.Y.C.; Fu, A.M.; Zhang, B. The homogeneous q-difference operator. Adv. Appl. Math. 2003, 31, 659–668. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Srivastava, H.M. Some q-generating functions of the Carlitz and Srivastava-Agarwal types associated with the generalized Hahn polynomials and the generalized Rogers-Szegö polynomials. Appl. Math. Comput. 2013, 219, 8398–8406. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Srivastava, H.M.; Chaudhary, M.P.; Wakene, F.K. A family of theta-function identities based upon q-binomial theorem and Heine’s transformations. Montes Taurus J. Pure Appl. Math. 2020, 8, 918. [Google Scholar]
- Chen, W.Y.C.; Liu, Z.-G. Parameter augmenting for basic hypergeometric series. II. J. Combin. Theory Ser. A 1997, 80, 175–195. [Google Scholar] [CrossRef] [Green Version]
- Saad, H.L.; Sukhi, A.A. Another homogeneous q-difference operator. Appl. Math. Comput. 2010, 215, 4332–4339. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Abdlhusein, M.A. New forms of the Cauchy operator and some of their applications. Russ. J. Math. Phys. 2016, 23, 124–134. [Google Scholar] [CrossRef]
- Roman, S. The theory of the umbral calculus. I. J. Math. Anal. Appl. 1982, 87, 58–115. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.Y.C.; Liu, Z.-G. Parameter augmentation for basic hypergeometric series. I. In Mathematical Essays in Honor of Gian-Carlo Rota; Sagan, B.E., Stanley, R.P., Eds.; Birkäuser: Basel, Switzerland; New York, NY, USA, 1998; pp. 111–129. [Google Scholar]
- Chen, V.Y.B.; Gu, N.S.S. The Cauchy operator for basic hypergeometric series. Adv. Appl. Math. 2008, 41, 177–196. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.P. Some applications of q-differential operator. J. Korean Math. Soc. 2010, 47, 223–233. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Wang, J.Z. Finite q-exponential operators with two parameters and their applications. Acta Math. Sinica 2010, 53, 1007–1018. (In Chinese) [Google Scholar]
- Li, N.N.; Tan, W. Two generalized q-exponential operators and their applications. Adv. Differ. Equ. 2016, 2016, 53. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Xu, B.; Arjika, S. A note on generalized q-difference equations for general Al-Salam-Carlitz polynomials. J. Differ. Equ. Appl. 2020. submitted. [Google Scholar]
- Arjika, S. q-difference equations for homogeneous q-difference operators and their applications. J. Differ. Equ. Appl. 2020, 26, 987–999. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Arjika, S. Generating functions for some families of the generalized Al-Salam-Carlitz q-polynomials. Adv. Differ. Equ. 2020, 2020, 498. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Arjika, S.; Kelil, A.S. Some homogeneous q-difference operators and the associated generalized Hahn polynomials. Appl. Set Valued Anal. Optim. 2019, 1, 187–201. [Google Scholar]
- Liu, Z.-G. Two q-difference equations and q-operator identities. J. Differ. Equ. Appl. 2010, 16, 1293–1307. [Google Scholar] [CrossRef]
- Liu, Z.-G. An extension of the non-terminating 6ϕ5-summation and the Askey-Wilson polynomials. J. Differ. Equ. Appl. 2011, 17, 1401–1411. [Google Scholar] [CrossRef]
- Andrews, G.E. q-Series: Their Development and Applications in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra; CBMS Regional Conference Lecture Series; American Mathematical Society: Ann Arbor, MI, USA, 1986; Volume 66. [Google Scholar]
- Andrews, G.E.; Askey, R. Another q-extension of the beta function. Proc. Am. Math. Soc. 1981, 81, 97–100. [Google Scholar]
- Cao, J. A note on generalized q-difference equations for q-beta and Andrews-Askey integral. J. Math. Anal. Appl. 2014, 412, 841–851. [Google Scholar] [CrossRef]
- Srivastava, H.M. The Zeta and related functions: Recent developments. J. Adv. Engrg. Comput. 2019, 3, 329–354. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. Some general families of the Hurwitz-Lerch Zeta functions and their applications: Recent developments and directions for further researches. Proc. Inst. Math. Mech. Nat. Acad. Sci. Azerbaijan 2019, 45, 234–269. [Google Scholar] [CrossRef]
- Shafiq, M.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Darus, M.; Kiran, S. An upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with k-Fibonacci numbers. Symmetry 2020, 12, 1043. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Cao, J.; Arjika, S. A Note on Generalized q-Difference Equations and Their Applications Involving q-Hypergeometric Functions. Symmetry 2020, 12, 1816. https://doi.org/10.3390/sym12111816
Srivastava HM, Cao J, Arjika S. A Note on Generalized q-Difference Equations and Their Applications Involving q-Hypergeometric Functions. Symmetry. 2020; 12(11):1816. https://doi.org/10.3390/sym12111816
Chicago/Turabian StyleSrivastava, Hari M., Jian Cao, and Sama Arjika. 2020. "A Note on Generalized q-Difference Equations and Their Applications Involving q-Hypergeometric Functions" Symmetry 12, no. 11: 1816. https://doi.org/10.3390/sym12111816
APA StyleSrivastava, H. M., Cao, J., & Arjika, S. (2020). A Note on Generalized q-Difference Equations and Their Applications Involving q-Hypergeometric Functions. Symmetry, 12(11), 1816. https://doi.org/10.3390/sym12111816