Quasi-Arithmetic Type Mean Generated by the Generalized Choquet Integral
Abstract
:1. Introduction
2. Generalized Choquet Integral
- (1)
- ,
- (2)
- , and
- (3)
- if and . then .
- if X is μ-essentially bounded from above, then
- if X is μ-essentially bounded from below then
- (i)
- if X is bounded from below (above) then X is μ-essentially bounded from below (above) for every capacity μ on ; and,
- (ii)
- if, for some capacity μ on , X is μ-essentially bounded from below then
- (iii)
- if, for some capacity μ on , X is μ-essentially bounded from above, then
- (i)
- If is an -measurable function μ-essentially bounded from above, then so is . Furthermore,
- (ii)
- If is an -measurable function μ-essentially bounded from below, then so is . Moreover,
- (i)
- (ii)
- and
- (iii)
- (i)
- if and then
- (ii)
- if and then
- (iii)
- if then
- (iv)
- if then
3. Quasi-Arithmetic Type Mean Generated by the Generalized Choquet Integral
4. Main Properties of the Mean
- (i)
- (ii)
- (iii)
- there exist and such thatand
- (i)
- (ii)
- (iii)
- there exist and , such thatand
- (i)
- (ii)
- (iii)
- one of the subsequent possibilities holds:
- (a)
- and there exist , such that
- (b)
- there exist with , such thatand
5. Conclusions
Funding
Conflicts of Interest
References
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- De Finetti, B. Sul concetto di media. G. Dell Inst. Ital. Degli Attuarii 1931, 2, 369–396. [Google Scholar]
- Kolmogorov, A.N. Sur la notion de la moyenne. Rend. Accad. dei Lincei 1930, 12, 388–391. [Google Scholar]
- Nagumo, M. Über eine Klasse der Mittelwerte. Jpn. J. Math. 1930, 7, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Bajraktarević, M. Sur une generalisation des moyennes quasilineaires. Publ. Inst. Math. (Beogr.) (N.S.) 1963, 3, 69–76. [Google Scholar]
- Páles, Z. On the characterization of quasi-arithmetic means with weight function. Aequationes Math. 1987, 32, 171–194. [Google Scholar] [CrossRef]
- Daróczy, Z. A general inequality for means. Aequationes Math. 1971, 7, 16–21. [Google Scholar] [CrossRef]
- Daróczy, Z. Uber eine Klasse von Mittelwerten. Publ. Math. Debr. 1973, 19, 211–217. [Google Scholar]
- Von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Schmeidler, D. Subjective probability and expected utility without additivity. Econometrica 1989, 57, 571–587. [Google Scholar] [CrossRef] [Green Version]
- Chudziak, J. Certainty Equivalent Under Cumulative Prospect Theory. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2018, 22, 131–295. [Google Scholar] [CrossRef]
- Choquet, G. Theory of capacities. Ann. Inst. Fourier 1953, 5, 131–295. [Google Scholar] [CrossRef] [Green Version]
- Denneberg, D. Lectures on Non-Additive Measure and Integral; Kluwer Academic Publishers: Boston, MA, USA, 1994. [Google Scholar]
- Tversky, A.; Kahneman, D. Advances in prospect theory: Cumulative representation of uncertainty. J. Risk Uncertain. 1992, 5, 297–323. [Google Scholar] [CrossRef]
- Sobek, B. Pexider equation on restricted domain. Demonstr. Math. 2010, 1, 87–88. [Google Scholar]
- Kuczma, M. An Introduction to the Theory of Functional Equations and Inequalities; Birkhäuser Basel: Berlin, Germany, 2009. [Google Scholar]
- Aczél, J. Extension of a generalized Pexider equation. Proc. Am. Math. Soc. 2005, 133, 3227–3233. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcik, S. Quasi-Arithmetic Type Mean Generated by the Generalized Choquet Integral. Symmetry 2020, 12, 2104. https://doi.org/10.3390/sym12122104
Wójcik S. Quasi-Arithmetic Type Mean Generated by the Generalized Choquet Integral. Symmetry. 2020; 12(12):2104. https://doi.org/10.3390/sym12122104
Chicago/Turabian StyleWójcik, Sebastian. 2020. "Quasi-Arithmetic Type Mean Generated by the Generalized Choquet Integral" Symmetry 12, no. 12: 2104. https://doi.org/10.3390/sym12122104
APA StyleWójcik, S. (2020). Quasi-Arithmetic Type Mean Generated by the Generalized Choquet Integral. Symmetry, 12(12), 2104. https://doi.org/10.3390/sym12122104