New Limit on Space-Time Variations in the Proton-to-Electron Mass Ratio from Analysis of Quasar J110325-264515 Spectra
Abstract
:1. Introduction
2. Data Analysis
3. Results and Discussion
4. Conclusions
Funding
Conflicts of Interest
References
- Hojjati, A.; Plahn, A.; Zucca, A.; Pogosian, L.; Brax, P.; Davis, A.C.; Zhao, G.B. Searching for scalar gravitational interactions in current and future cosmological data. Phys. Rev. D 2016, 93, 043531. [Google Scholar] [CrossRef] [Green Version]
- Bainbridge, M.B.; Barstow, M.A.; Reindl, N.; Brilett, W.U.L.T.; Ayres, T.R.; Webb, J.K.; Barrow, J.D.; Jiting, H.; Holberg, J.B.; Preval, S.P.; et al. Probing the Gravitational Dependence of the Fine-Structure Constant from Observations of White Dwarf Stars. Universe 2017, 3, 32. [Google Scholar] [CrossRef] [Green Version]
- Levshakov, S.A.; Kozlov, M.G. Fine-structure transitions as a tool for studying variation of alpha at high redshifts. Mon. Not. R. Soc. 2017, 469, L16. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.J.A.P.; Pinho, A.M.M. Stability of fundamental couplings: A global analysis. Phys. Rev. D 2017, 95, 023008. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R. Fundamental Constant Observational Bounds on the Variability of the QCD Scale. Mon. Not. R. Soc. 2017, 467, 4558. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. Editorial for the Special Issue 100 Years of Chronogeometrodynamics: The Status of the Einstein’s Theory of Gravitation in Its Centennial Year. Universe 2015, 1, 38–81. [Google Scholar] [CrossRef] [Green Version]
- Debono, I.; Smoot, G.F. General Relativity and Cosmology: Unsolved Questions and Future Directions. Universe 2016, 2, 23. [Google Scholar] [CrossRef]
- Vishwakarma, R.G. Einstein and Beyond: A Critical Perspective on General Relativity. Universe 2016, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. A uniform treatment of the orbital effects due to a violation of the strong equivalence principle in the gravitational Stark-like limit. Class. Quant. Grav. 2013, 30, 025006. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. Orbital effects of spatial variations of fundamental coupling constants. Mon. Not. R. Soc 2011, 417, 2392. [Google Scholar] [CrossRef] [Green Version]
- Avelino, P.P.; Sousa, L. Observational Constraints on Varying-Alpha Domain Walls. Universe 2015, 1, 6–16. [Google Scholar] [CrossRef]
- Martino, I.D.; Martins, J.A.P.; Ebeling, H.; Kocevski, D. New Constraints on Spatial Variations of the Fine Structure Constant from Clusters of Galaxies. Universe 2016, 2, 34. [Google Scholar] [CrossRef] [Green Version]
- Leite, A.C.O.; Martins, C.J.A.P.; Molaro, P. Dark Energy Constraints from Espresso Tests of the Stability of Fundamental Couplings. Universe 2017, 3, 30. [Google Scholar] [CrossRef]
- Bainbridge, M.B.; Webb, J.K. Evaluating the New Automatic Method for the Analysis of Absorption Spectra Using Synthetic Spectra. Universe 2017, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.I. The Relation between Fundamental Constants and Particle Physics Parameters. Universe 2017, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Kostelecky, A.; Lehnert, R.; Perry, M. Spacetime-varying couplings and Lorentz violation. Phys Rev. D 2003, 68, 123511. [Google Scholar] [CrossRef] [Green Version]
- Uzan, J.P. Varying Constants, Gravitation and Cosmology. Live. Rev. Relativ. 2011, 14, 2. [Google Scholar] [CrossRef] [Green Version]
- Liberati, S. Tests of Lorentz invariance: A 2013 update. Class. Quant. Grav. 2013, 30, 133001. [Google Scholar] [CrossRef]
- Dzuba, V.A.; Flambaum, V.V.; Webb, J.K. Calculations of the relativistic effects in many-electron atoms and space-time variation of fundamental constant. Phys. Rev. Lett. 1999, 82, 888. [Google Scholar] [CrossRef] [Green Version]
- Webb, J.K.; Flambaum, V.V.; Churchill, C.W.; Drinkwater, M.J.; Barrow, J.D. Search for Time Variation of the Fine Structure Constant. Phys. Rev. Lett. 1999, 82, 884. [Google Scholar] [CrossRef] [Green Version]
- Webb, J.K.; King, J.A.; Murphy, M.T.; Flambaum, V.V.; Carswell, R.F.; Bainbridge, M.B. Indications of a Spatial Variation of the Fine Structure Constant. Phys. Rev. Lett. 2011, 107, 191101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, T.D. An Updated Constraint on Variations of the Fine-Structure Constant Using Wavelengths of Fe II Absorption Line Multiplets. Symmetry 2018, 10, 722. [Google Scholar] [CrossRef] [Green Version]
- Flambaum, V.V.; Leinweber, D.B.; Thomas, A.W.; Young, R.D. Limits on variations of the quark masses, QCD scale, and fine structure constant. Phys Rev. D 2004, 69, 115006. [Google Scholar] [CrossRef] [Green Version]
- Jansen, P.; Kleiner, I.; Xu, L.H.; Ubachs, W.; Bethlem, H.L. Sensitivity of transitions in internal rotor molecules to apossible variation of the proton-to-electron mass ratio. Phys Rev. A 2011, 84, 062505. [Google Scholar] [CrossRef] [Green Version]
- Jansen, P.; Bethlem, H.L.; Ubachs, W. Perspective: Tipping the scales: Search for drifting constants from molecular spectra. J. Chem. Phys. 2014, 140, 010901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flambaum, V.V.; Kozlov, M.G. Limit on the Cosmological Variation of mp/me from the Inversion Spectrum of Ammonia. Phys. Rev. Lett. 2007, 98, 240801. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.T.; Flambaum, V.V.; Muller, S.; Henkel, C. Strong limit on a variable proton-to-electron mass ratio from molecules in the distant universe. Science 2008, 320, 1611. [Google Scholar] [CrossRef]
- Kanekar, N. Constraining Changes in the Proton-Electron Mass Ratio With Inversion and Rotational Lines. Astrophys. J. 2011, 728, L12. [Google Scholar] [CrossRef] [Green Version]
- Bagdonaite, J.; Dapra, M.; Jansen, P.; Bethlem, H.L.; Ubachs, W.; Muller, S.; Menten, K.M. Robust Constraint on a Drifting Proton-to-Electron Mass Ratio at z = 0.89 from Methanol Observation at Three Radio Telescopes. Phys. Rev. Lett. 2013, 111, 231101. [Google Scholar] [CrossRef] [Green Version]
- Reinhold, E.; Buning, R.; Hollenstein, U.; Ivanchik, A.; Petitjean, P.; Ubachs, W. Indication of a Cosmological Variation of the Proton-Electron Mass Ratio Based on Laboratory Measurement and Reanalysis of H 2 Spectra. Phys. Rev. Lett. 2006, 96, 151101. [Google Scholar] [CrossRef] [Green Version]
- King, J.A.; Webb, J.K.; Murphy, M.T.; Carswell, R.F. Stringent null constraint on cosmological evolution of the proton-to-electron mass ratio. Phys. Rev. Lett. 2008, 101, 251304. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.I.; Bechtold, J.; Black, J.H.; Eisenstein, D.; Fan, X.; Kennicutt, R.C.; Martins, C.; Prochaska, J.X.; Shirley, Y.L. An Observational Determination of the Proton to Electron Mass Ratio in the Early Universe. Astrophys. J. 2009, 703, 1648. [Google Scholar] [CrossRef] [Green Version]
- Malec, A.L.; Buning, R.; Murphy, M.T.; Milutinovic, N.; Ellison, S.L.; Prochaska, J.X.; Kaper, L.; Tumlinson, J.; Carswell, R.F.; Ubachs, W. Keck telescope constraint on cosmological variation of the proton-to-electron mass ratio. Mon. Not. R. Soc. 2010, 403, 1541. [Google Scholar] [CrossRef] [Green Version]
- King, J.A.; Murphy, M.T.; Ubachs, W.; Webb, J.K. New constraint on cosmological variation of the proton-to-electron mass ratio from Q0528−250. Mon. Not. R. Soc. 2011, 417, 3010. [Google Scholar] [CrossRef]
- van Weerdenburg, F.; Murphy, M.T.; Malec, A.L.; Kaper, L.; Ubachs, W. First constraint on cosmological variation of the proton-to-electron mass ratio from two independent telescopes. Phys. Rev. Lett. 2011, 106, 180802. [Google Scholar] [CrossRef] [Green Version]
- Wendt, M.; Reimers, D. Variability of the proton-to-electron mass ratio on cosmologicalscales. Eur. Phys. J. Spec. Top. 2008, 163, 197. [Google Scholar] [CrossRef]
- Bagdonaite, J.; Murphy, M.T.; Kaper, L.; Ubachs, W. Constraint on a variation of the proton-to-electron mass ratio from H2 absorption towards quasar Q2348-011. Mon. Not. R. Soc. 2012, 421, 419. [Google Scholar] [CrossRef] [Green Version]
- Wendt, M.; Molaro, P. QSO 0347-383 and the invariance of mp/me in the course of cosmic time⋆. Astron. Astrophys. 2012, 541, A69. [Google Scholar] [CrossRef] [Green Version]
- Molaro, P.; Centurion, M.; Whitmore, J.B.; Evans, T.M.; Murphy, M.T.; Agafonova, I.I.; Bonifacio, P.; D’Odorico, S.; Levshakov, S.A.; Lopez, S.; et al. The UVES large programfor testing fundamental physics—II. Constraints on achange inμ towards quasar HE0027-1836. Mon. Not. R. Soc. 2013, 435, 861. [Google Scholar]
- Bagdonaite, J.; Ubachs, W.; Murphy, M.T.; Whitmore, J.B. Analysis of Molecular Hydrogen Absorption Toward Qso b06425038 for a Varying Proton-To-Electron Mass Ratio. Astrophys. J. 2014, 782, 10. [Google Scholar] [CrossRef] [Green Version]
- Albornoz Vasquez, D.; Rahmani, H.; Noterdaeme, P.; Petitjean, P.; Srianand, R.; Ledoux, C. Molecular hydrogen in the zabs = 2.66 damped Lyman-α absorber towards Q J0643−5041, Physical conditions and limits on the cosmological variation of the proton-to-electron mass ratio. Astron. Astrophys. 2014, 562, A88. [Google Scholar] [CrossRef] [Green Version]
- Bagdonaite, J.; Ubachs, W.; Murphy, M.T.; Whitmore, J.B. Constraint on a Varying Proton-Electron Mass Ratio 1.5 Billion Years after the Big Bang. Phys. Rev. Lett. 2015, 114, 071301. [Google Scholar] [CrossRef] [PubMed]
- Dapra, M.; Bagdonaite, J.; Murphy, M.T.; Ubachs, W. Constraint on a varying proton-to-electron mass ratio from molecular hydrogen absorption towards quasar SDSS J123714.60+064759.5. Mon. Not. R. Soc. 2015, 454, 489. [Google Scholar] [CrossRef]
- Ubachs, W.; Bagdonaite, J.; Salumbides, E.J.; Murphy, M.T.; Kaper, L. Colloquium: Search for a drifting proton-electron mass ratio from H2. Rev. Mod. Phys. 2016, 88, 021003. [Google Scholar] [CrossRef] [Green Version]
- Calmet, X.; Fritsch, H. The Cosmological Evolution of the Nucleon Mass and the Electroweak Coupling Constants. Eur. Phys. J. C 2002, 24, 639. [Google Scholar] [CrossRef] [Green Version]
- Ubachs, W.; Buning, R.; Eikema, K.S.E.; Reinhold, E. On a possible variation of the proton-to-electron mass ratio:H2 spectra in the line of sight of high-redshift quasars and in the laboratory. J. Mol. Spectros. 2007, 241, 155. [Google Scholar] [CrossRef] [Green Version]
- Tzanavaris, P.; Webb, J.K.; Murphy, M.T.; Flambaum, V.V.; Curran, S. Limits on Variations in Fundamental Constants from 21-cm and Ultraviolet Quasar Absorption Lines. Phys. Rev. Lett. 2005, 95, 041301. [Google Scholar] [CrossRef]
- Salumbides, E.J.; Niu, M.L.; Bagdonaite, J.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Ubachs, W. CO A–X system for constraining cosmological drift of the proton-electron mass ratio. Phys. Rev. A 2012, 86, 022510. [Google Scholar] [CrossRef] [Green Version]
- Noterdaeme, P.; Ledoux, C.; Srianand, R.; Petitjean, P.; Lopez, S. Diffuse molecular gas at high redshift* Detection of CO molecules and the 2175 Å dust feature at z = 1.64. Astron. Astrophys. 2009, 503, 765. [Google Scholar] [CrossRef]
- Noterdaeme, P.; Petitjean, P.; Ledoux, C.; Lopez, S.; Srianand, R.; Vergani, S.D. A translucent interstellar cloud at z=2.69-CO, H2, and HD in the line-of-sight to SDSS J123714.60 + 064759.5. Astron. Astrophys. 2010, 523, A80. [Google Scholar] [CrossRef] [Green Version]
- Srianand, R.; Noterdaeme, P.; Ledoux, C.; Petitjean, P. First detection of CO in a high-redshift damped Lyman- α system. Astron. Astrophys. 2008, 482, L39. [Google Scholar] [CrossRef]
- Aldenius, M.; Johansson, S.; Murphy, M.T. Accurate laboratory ultraviolet wavelengths for quasar absorption-line constraints on varying fundamental constants. Mon. Not. R. Soc. 2006, 370, 444. [Google Scholar] [CrossRef] [Green Version]
- Nave, G.; Sansonetti, C.J. Wavelengths of the 3d6 (5D5)4sa (6D)−3d6 (5D)4py (6P) multiplet of Fe II (UV 8). Opt. Soc. Am. 2011, 28, 737. [Google Scholar] [CrossRef]
- Nave, G. Wavelengths of Fe II lines for studies of time variation of the fine-structure constant. Mon. Not. R. Soc. 2012, 420, 1570. [Google Scholar] [CrossRef] [Green Version]
- Pickering, J.C.; Thorne, A.P.; Murray, J.E.; Litzén, U. Precise laboratory wavelengths of importance to studies of the time variation of the fine structure constant. Mon. Not. R. Soc. 2000, 319, 163. [Google Scholar] [CrossRef] [Green Version]
- Pickering, J.C.; Donnelly, M.; Nilsson, H.; Hibbert, A.; Johansson, S. The FERRUM Project: Experimental oscillator strengths of the UV 8 multiplet and other UV transitions from the y6P levels of Fe II. Astron. Astrophys. 2002, 396, 715. [Google Scholar] [CrossRef]
- Chen, X.; Ellingsen, S.P.; Mei, Y. Astrophysical constraints on the proton-to-electron mass ratio with FAST. Res. Astron. Astrophys. 2019, 19, 018. [Google Scholar] [CrossRef] [Green Version]
- Le, T.D. Wavelengths of [Fe II] from quasar J110325-264515 for a study of space-time variations in the fine-structure constant. Results Phys. 2019, 12, 1035. [Google Scholar] [CrossRef]
- Coc, A.; Nunes, N.J.; Olive, K.A.; Uzan, J.P.; Vangioni, E. Coupled variations of fundamental couplings and primordial nucleosynthesis. Phys. Rev. D 2007, 76, 023511. [Google Scholar] [CrossRef] [Green Version]
- Le, T.D. A search for the space-time variations in the proton-to-electron mass ratio using the [Fe II] transitions. Chin. J. Phys. 2019, 62, 252–257. [Google Scholar] [CrossRef]
- Ferreira, M.C.; Frigola, O.; Martins, C.J.A.P.; Monteiro, A.M.R.V.L.; Sola, J. Consistency tests of the stability of fundamental couplings and unification scenarios. Phys. Rev. D 2014, 89, 083011. [Google Scholar] [CrossRef] [Green Version]
- Cowie, L.L.; Songaila, A. Astrophysical Limits on the Evolution of Dimensionless Physical Constants over Cosmological Time. Astrophys. J. 1995, 453, 596. [Google Scholar]
- Levshakov, S.A.; Dessauges-Zavadsky, M.; D’Odorico, S.; Molaro, P. A new constraint on cosmological variability of the proton-to-electron mass ratio. Mon. Not. R. Soc. 2002, 333, 373. [Google Scholar] [CrossRef] [Green Version]
- Malec, A.L.; Buning, R.; Murphy, M.T.; Milutinovic, N.; Ellison, S.; Prochaska, J.X.; Kaper, L.; Tumlinson, J.; Carswell, R.F.; Ubachs, W. New limit on a varying proton-to-electron mass ratio from high-resolution optical quasar spectra. Mon. Not. R. Soc. 2010, 403, 1541. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.T.; Malec, A.L.; Prochaska, J. Precise limits on cosmological variability of the fine-structure constant with zinc and chromium quasar absorption lines. Phys. Rev. Lett. 2011, 106, 180802. [Google Scholar]
- Varshalovich, D.A.; Levshakov, S.A. On a time dependence of physical constants. JETP Lett. 1993, 58, 237. [Google Scholar]
- Wendt, M.; Molaro, P. Robust limit on a varying proton-to-electron mass ratio from a single H2 system. Astron. Astrophys. 2011, 526, A96. [Google Scholar] [CrossRef] [Green Version]
- King, J.A.; Murphy, M.T.; Ubachs, W.; Webb, J.K. Markov Chain Monte Carlo methods applied to measuring the fine structure constant from quasar spectroscopy. Mon. Not. R. Soc. 2011, 417, 3010. [Google Scholar] [CrossRef]
- Kanekar, N.; Ghosh, T.; Chengalur, J. Stringent Constraints on Fundamental Constant Evolution Using Conjugate 18 cm Satellite OH Lines. Phys. Rev. Lett. 2018, 120, 061302. [Google Scholar] [CrossRef] [Green Version]
- Bagdonaite, J.; Salumbides, E.J.; Preval, S.P.; Barstow, M.A.; Barrow, J.D.; Murphy, M.T.; Ubachs, W. Limits on a gravitational field dependence of the proton-electron mass ratio from H2 in white dwarf stars. Phys. Rev. Lett. 2014, 113, 123002. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, H.; Srianand, R.; Gupta, N.; Petitjean, P.; Noterdaeme, P.; Vasquez, D.A. Constraining the variation of fundamental constants at z ∼ 1.3 using 21-cm absorbers. Mon. Not. R. Soc. 2012, 425, 556. [Google Scholar] [CrossRef] [Green Version]
- Srianand, R.; Gupta, N.; Petitjean, P.; Noterdaeme, P.; Ledoux, C. Detection of 21-cm, H2 and deuterium absorption at z > 3 along the line of sight to J1337 + 3152. Mon. Not. R. Soc. 2010, 405, 1888. [Google Scholar] [CrossRef] [Green Version]
- Levshakov, S.A.; Kozlov, M.G.; Reimers, D. Methanol as a Tracer of Fundamental Constants. Astrophys. J. 2011, 738, 26. [Google Scholar] [CrossRef] [Green Version]
- Levshakov, S.A.; Molaro, P.; Lapinov, A.V.; Reimers, D.; Henkel, C.; Sakai, T. Searching for chameleon-like scalar fields with the ammonia method. Astron. Astrophys. 2010, 512, A44. [Google Scholar] [CrossRef]
- Levshakov, S.A.; Lapinov, A.V.; Henkel, C.; Molaro, P.; Reimers, D.; Kozlov, M.G.; Agafonova, I. Searching for chameleon-like scalar fields with the ammonia method. II. Mapping of cold molecular cores in NH3 and HC3N lines. Astron. Astrophys. 2010, 524, A32. [Google Scholar] [CrossRef]
- Truppe, S.; Hendricks, R.J.; Tokunaga, S.K.; Lewandowski, H.J.; Kozlov, M.G.; Henkel, C.; Hnds, E.A.; Tarbutt, M.R. A search for varying fundamental constants using hertz-level frequency measurements of cold CH molecules. Nat. Commun. 2013, 4, 2600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, L.G.; Liu, A.W.; Pachucki, K.; Komasa, J.; Sun, Y.R.; Wang, J.; Hu, S.M. Toward a Determination of the Proton-Electron Mass Ratio from the Lamb-Dip Measurement of HD. Phys. Rev. Lett. 2018, 120, 153001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohr, P.J.; Newell, D.B.; Taylor, B.N. CODATA recommended values of the fundamental physical constants: 2014. Rev. Mod. Phys. 2016, 88, 035009. [Google Scholar] [CrossRef] [Green Version]
z | ||
---|---|---|
1.83704 | −0.08415 | 0.0660 |
1.83743 | −0.17439 | 0.1164 |
1.83752 | −0.29722 | 0.1032 |
1.83766 | −0.12876 | 0.0504 |
1.83772 | 0.14416 | 0.3240 |
1.83772 | −0.09147 | 0.0852 |
1.83816 | −0.06879 | 0.4632 |
1.83819 | −0.13683 | 0.0840 |
1.83825 | −0.15553 | 0.0720 |
1.83832 | 0.12753 | 0.0948 |
1.83836 | −0.22846 | 0.0704 |
1.83847 | −0.14485 | 0.2280 |
1.83854 | 0.37092 | 0.2016 |
1.83855 | −0.49429 | 0.1692 |
1.83857 | −0.50071 | 0.1203 |
1.83857 | −0.16694 | 0.0732 |
1.83865 | −0.11433 | 0.1116 |
1.83870 | 0.08293 | 0.1926 |
1.83874 | −0.25422 | 0.1344 |
1.83886 | 0.25605 | 0.1572 |
1.83888 | −0.11963 | 0.1560 |
1.83888 | −0.06850 | 0.0806 |
1.83891 | −0.09760 | 0.1536 |
1.83895 | −0.20794 | 0.0624 |
1.83905 | 0.37487 | 0.0900 |
1.83704 | −0.08415 | 0.0660 |
1.83743 | −0.17439 | 0.1164 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, T.D. New Limit on Space-Time Variations in the Proton-to-Electron Mass Ratio from Analysis of Quasar J110325-264515 Spectra. Symmetry 2020, 12, 344. https://doi.org/10.3390/sym12030344
Le TD. New Limit on Space-Time Variations in the Proton-to-Electron Mass Ratio from Analysis of Quasar J110325-264515 Spectra. Symmetry. 2020; 12(3):344. https://doi.org/10.3390/sym12030344
Chicago/Turabian StyleLe, T. D. 2020. "New Limit on Space-Time Variations in the Proton-to-Electron Mass Ratio from Analysis of Quasar J110325-264515 Spectra" Symmetry 12, no. 3: 344. https://doi.org/10.3390/sym12030344
APA StyleLe, T. D. (2020). New Limit on Space-Time Variations in the Proton-to-Electron Mass Ratio from Analysis of Quasar J110325-264515 Spectra. Symmetry, 12(3), 344. https://doi.org/10.3390/sym12030344