Exceptional Set for Sums of Symmetric Mixed Powers of Primes
Abstract
:1. Introduction and Main Result
2. Outline of the Proof of Theorem 1
3. Some Auxiliary Lemmas
4. The Singular Series
- (i)
- we have
- (ii)
- there exists an absolute positive constant , such that, for ,
5. Proof of Proposition 2
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vaughan, R.C. The Hardy-Littlewood Method; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Davenport, H. On Waring’s problem for fourth powers. Ann. Math. 1939, 40, 731–747. [Google Scholar] [CrossRef]
- Hardy, G.H.; Ramanujan, S. Asymptotic formulae in combinatory analysis. Proc. Lond. Math. Soc. 1918, 17, 75–115. [Google Scholar] [CrossRef]
- Vinogradov, I.M. Representation of an odd number as a sum of three primes. Dokl. Akad. Nauk SSSR 1937, 15, 6–7. [Google Scholar]
- Vinogradov, I.M. Some theorems concerning the theory of primes. Mat. Sb. 1937, 44, 179–195. [Google Scholar]
- Hua, L.K. Additive Primzahltheorie; B. G. Teubner Verlagsgesellschaft: Leipzig, Germany, 1959. [Google Scholar]
- Hua, L.K. Additive Theory of Prime Numbers; American Mathematical Society: Providence, RI, USA, 1965. [Google Scholar]
- Jagy, W.C.; Kaplansky, I. Sums of squares, cubes, and higher powers. Exp. Math. 1995, 4, 169–173. [Google Scholar] [CrossRef]
- Brüdern, J. On Waring’s problem for cubes and biquadrates. J. Lond. Math. Soc. 1988, 37, 25–42. [Google Scholar] [CrossRef]
- Brüdern, J.; Wooley, T.D. On Waring’s problem: Three cubes and a sixth power. Nagoya Math. J. 2001, 163, 13–53. [Google Scholar] [CrossRef] [Green Version]
- Davenport, H.; Heilbronn, H. Note on a result in the additive theory of numbers. Proc. Lond. Math. Soc. 1937, 2, 142–151. [Google Scholar] [CrossRef]
- Davenport, H.; Heilbronn, H. On Waring’s problem: Two cubes and one square. Proc. Lond. Math. Soc. 1937, 2, 73–104. [Google Scholar]
- Roth, K.F. Proof that almost all positive integers are sums of a square, a positive cube and a fourth power. J. Lond. Math. Soc. 1949, 24, 4–13. [Google Scholar] [CrossRef]
- Vaughan, R.C. A ternary additive problem. Proc. Lond. Math. Soc. 1980, 41, 516–532. [Google Scholar] [CrossRef]
- Hooley, C. On a new approach to various problems of Waring’s type. In Recent Progress in Analytic Number Theory; Academic Press: London, UK, 1981; Volume 1, pp. 127–191. [Google Scholar]
- Davenport, H. On Waring’s problem for cubes. Acta Math. 1939, 71, 123–143. [Google Scholar] [CrossRef]
- Lu, M.G. On Waring’s problem for cubes and fifth power. Sci. China Ser. A 1993, 36, 641–662. [Google Scholar]
- Kawada, K.; Wooley, T.D. Sums of fourth powers and related topics. J. Reine Angew. Math. 1999, 512, 173–223. [Google Scholar] [CrossRef]
- Vaughan, R.C. A new iterative method in Waring’s problem. Acta Math. 1989, 162, 1–71. [Google Scholar] [CrossRef]
- Brüdern, J.; Kawada, K. Ternary problems in additive prime number theory. In Analytic Number Theory; Jia, C., Matsumoto, K., Eds.; Kluwer: Dordrecht, The Netherlands, 2002; pp. 39–91. [Google Scholar]
- Zhao, L. On unequal powers of primes and powers of 2. Acta Math. Hungar. 2015, 146, 405–420. [Google Scholar] [CrossRef]
- Liu, Z.; Lü, G. On unlike powers of primes and powers of 2. Acta Math. Hung. 2011, 132, 125–139. [Google Scholar] [CrossRef]
- Lü, X.D. On unequal powers of primes and powers of 2. Ramanujan J. 2019, 50, 111–121. [Google Scholar] [CrossRef]
- Wooley, T.D. Slim exceptional sets and the asymptotic formula in Waring’s problem. Math. Proc. Camb. Philos. Soc. 2003, 134, 193–206. [Google Scholar] [CrossRef]
- Zhao, L. On the Waring-Goldbach problem for fourth and sixth powers. Proc. Lond. Math. Soc. 2014, 108, 1593–1622. [Google Scholar] [CrossRef]
- Pan, C.D.; Pan, C.B. Goldbach Conjecture; Science Press: Beijing, China, 1981. [Google Scholar]
- Ren, X.M. On exponential sums over primes and application in Waring–Goldbach problem. Sci. China Ser. A 2005, 48, 785–797. [Google Scholar] [CrossRef]
- Vinogradov, I.M. Elements of Number Theory; Dover Publications: New York, NY, USA, 1954. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Liu, C.; Zhang, Z.; Zhang, M. Exceptional Set for Sums of Symmetric Mixed Powers of Primes. Symmetry 2020, 12, 367. https://doi.org/10.3390/sym12030367
Li J, Liu C, Zhang Z, Zhang M. Exceptional Set for Sums of Symmetric Mixed Powers of Primes. Symmetry. 2020; 12(3):367. https://doi.org/10.3390/sym12030367
Chicago/Turabian StyleLi, Jinjiang, Chao Liu, Zhuo Zhang, and Min Zhang. 2020. "Exceptional Set for Sums of Symmetric Mixed Powers of Primes" Symmetry 12, no. 3: 367. https://doi.org/10.3390/sym12030367
APA StyleLi, J., Liu, C., Zhang, Z., & Zhang, M. (2020). Exceptional Set for Sums of Symmetric Mixed Powers of Primes. Symmetry, 12(3), 367. https://doi.org/10.3390/sym12030367