Analysis of Structural Changes in Financial Datasets Using the Breakpoint Test and the Markov Switching Model
Abstract
:1. Introduction
2. Markov Switching Model
3. Methodology
3.1. Data and Variables
3.2. Breakpoint Test
3.2.1. Quandt–Andrews Breakpoint Test
3.2.2. Bai–Perron Test
3.3. Co-Integration Test
3.4. Markov Switching Regression Model
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fan, J.; Yao, Q. Nonlinear Time Series: Nonparametric and Parametric Methods; Springer: Berlin, Germany, 2005. [Google Scholar]
- Phoong, S.W.; Phoong, S.Y.; Moghavvemi, S.; Phoong, K.H. Multiple Breakpoint Test on Crude Oil Price. Found. Manag. 2019, 11, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, J.D. A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle. Econometrica 1989, 57, 357–384. [Google Scholar] [CrossRef]
- Krolzig, H.M. Markov-Switching Vector Autoregression; Springer: Berlin, Germany, 1997. [Google Scholar]
- Shaari, M.S.; Hussain, N.E.; Abdullah, H. The effects of oil price shocks and exchange rate volatility on inflation: Evidence from Malaysia. Int. Bus. Res. 2012, 5, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, M.A.; Butt, S.I.; Gilani, O.; Jamil, M.; Maqsood, A.; Zhang, F. Optimizing Availability of a Framework in Series Configuration Utilizing Markov Model and Monte Carlo Simulation Techniques. Symmetry 2017, 9, 96. [Google Scholar] [CrossRef] [Green Version]
- Basnet, H.C.; Upadhyaya, K.P. Impact of oil price shocks on output, inflation and the real exchange rate: Evidence from selected ASEAN countries. Appl. Econ. 2015, 47, 3078–3091. [Google Scholar] [CrossRef]
- David, S.A.; Inácio, C.M.C., Jr.; Tenreiro Machado, J.A. Ethanol Prices and Agricultural Commodities: An Investigation of Their Relationship. Mathematics 2019, 7, 774. [Google Scholar] [CrossRef] [Green Version]
- Alghalith, M. The interaction between food prices and oil prices. Energy Econ. 2010, 32, 1520–1522. [Google Scholar] [CrossRef]
- Nazlioglu, S.; Soytas, U. World oil prices and agricultural commodity prices: Evidence from an emerging market. Energy Econ. 2011, 33, 488–496. [Google Scholar] [CrossRef]
- Nazlioglu, S. World oil and agricultural commodity prices: Evidence from nonlinear causality. Energy Policy 2011, 39, 2935–2943. [Google Scholar] [CrossRef]
- Rafiq, S.; Salim, R.; Bloch, H. Impact of crude oil price volatility on economic activities: An empirical investigation in the Thai economy. Resour. Policy 2009, 34, 121–132. [Google Scholar] [CrossRef]
- Zhou, Z.; Jin, Q.; Peng, J.; Xiao, H.; Wu, S. Further Study of the DEA-Based Framework for Performance Evaluation of Competing Crude Oil Prices’ Volatility Forecasting Models. Mathematics 2019, 7, 827. [Google Scholar] [CrossRef] [Green Version]
- Quandt, R.E. Estimation of the parameters of a linear regression system obeying two separate regime. J. Am. Stat. Assoc. 1958, 53, 873–880. [Google Scholar] [CrossRef]
- Quandt, R.E. A new approach to estimating switching regression. J. Am. Stat. Assoc. 1972, 67, 306–317. [Google Scholar] [CrossRef]
- Goldfeld, S.M.; Quandt, R.E. A Markov model for switching regressions. J. Econom. 1973, 1, 3–16. [Google Scholar] [CrossRef]
- Cosslett, S.R.; Lee, L.F. Serial correlation in the latent discrete variable models. J. Econom. 1985, 27, 79–97. [Google Scholar] [CrossRef]
- Kim, C.J. Dynamic linear models with Markov-switching. J. Econom. 1994, 60, 1–22. [Google Scholar] [CrossRef]
- Phoong, S.W.; Ismail, M.T.; Sek, S.K. Linear Vector Error Correction Model versus Markov Switching Vector Error Correction Model to Investigate Stock Market Behaviour. Asian Acad. Manag. J. Account. Financ. 2014, 10, 133–149. [Google Scholar]
- Ardia, D.; Bluteau, K.; Boudt, K.; Leopoldo, C. Forecasting risk with Markov-switching GARCH models:A large-scale performance study. Int. J. Forecast. 2018, 34, 733–747. [Google Scholar] [CrossRef]
- Caporale, G.; Zekokh, T. Modelling volatility of cryptocurrencies using Markov-Switching GARCH models. Res. Int. Bus. Financ. 2019, 48, 143–155. [Google Scholar] [CrossRef]
- Berument, M.; Ceylan, N.; Dogan, N. The Impact of Oil Price Shocks on the Economic Growth of Selected MENA Countries. Energy J. 2010, 31, 149–176. [Google Scholar]
- Arezki, R.; Jakab, Z.; Laxton, D.; Matsumoto, A.; Nurbekyan, A.; Wang, H.; Yao, J. Oil Prices and the Global Economy. Int. Monet. Fund 2017, 17, 1–30. [Google Scholar] [CrossRef]
- Shahbaz, M.; Lean, H.H. Does financial development increase energy consumption? The role of industrialization and urbanization in Tunisia. Energy Policy 2012, 40, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Gómez, M.; Ciarreta, A.; Zarraga, A. Linear and nonlinear causality between energy consumption and economic growth: The case of Mexico 1965–2014. Energies 2018, 11, 784. [Google Scholar] [CrossRef] [Green Version]
- Gómez, M.; Rodríguez, J.C. Energy Consumption and Financial Development in NAFTACountries, 1971–2015. Appl. Sci. 2019, 9, 302. [Google Scholar] [CrossRef] [Green Version]
- De Martino, I. Decaying Dark Energy in Light of the Latest Cpsmological Dataset. Symmetry 2018, 10, 372. [Google Scholar] [CrossRef] [Green Version]
- Farah, P.D. Five Years of China WTO Membership: EU and US Perceptives about China’s Compliance with Transparency Commitments and the Transitional Review Mechanism. Leg. Issuses Econ. Integr. 2006, 33, 263–304. [Google Scholar]
- Neftci, S.N. Are economic time series asymmetric over the business cycle? J. Political Econ. 1984, 92, 306–328. [Google Scholar] [CrossRef]
- Brunner, A.D. Conditional symmetries in real GNP: A semi nonparametric approach. J. Bus. Econ. Stat. 1992, 10, 65–72. [Google Scholar]
- Laredic, S.; Mignon, V. The impact of oil prices on GDP in European countries: An empirical investigation based on asymmetric cointegration. Energy Policy 2006, 34, 3910–3915. [Google Scholar] [CrossRef]
- Gadea, M.D.; Gómez-Loscos, A.; Montañés, A. Oil Price and Economic Growth: A Long Story? Econometrics 2016, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Benhmad, F. Dynamic cyclical comovements betweem oil prices and US GDP: A wavelet perspective. Energy Policy 2013, 57, 141–151. [Google Scholar] [CrossRef]
- Rafiq, S.; Bloch, H. Explaining commodity prices through asymmetric oil shocks: Evidence from nonlinear models. Resour. Policy 2016, 50, 34–48. [Google Scholar] [CrossRef] [Green Version]
- Miao, D.W.C.; Wu, C.C.; Su, Y.K. Regime-switching in volatility and correlation structure using range-based models with Markov-switching. Econ. Model. 2013, 31, 87–93. [Google Scholar] [CrossRef]
- Balcilar, M.; Eyden, R.; Uwilingiye, J.; Gupta, R. The Impact of Oil Price on South African GDP Growth: A Bayesian Markov Switching VAR Analysis. Afr. Dev. Rev. 2017, 29, 319–336. [Google Scholar] [CrossRef]
- Ayodeji, I.O. A Three-State Markov-Modulated Switching Model for Exchange Rates. J. Appl. Math. 2016, 2016, 5061749. [Google Scholar] [CrossRef] [Green Version]
Mean | Standard Deviation | Skewness | Kurtosis | Jarqua–Bera | |
---|---|---|---|---|---|
LOGOP | 4.32 | 0.37 | −0.34 | 1.81 | 2.85 |
MYGDP | 71,410.50 | 5296.73 | −0.39 | 2.29 | 1.66 |
Quandt–Andrews Unknown Breakpoint Test | |||
---|---|---|---|
Null Hypothesis: No Breakpoints within 15% Trimmed Data | |||
Varying Regressors: All Equation Variables | |||
Statistic | Value | Prob. | |
Maximum LR F-statistic (2012Q2) | 21.39673 | 0.0000 | |
Maximum Wald F-statistic (2012Q2) | 42.79346 | 0.0000 | |
Exp LR F-statistic | 8.147680 | 0.0000 | |
Exp Wald F-statistic | 18.32268 | 0.0000 | |
Ave LR F-statistic | 9.538625 | 0.0001 | |
Ave Wald F-statistic | 19.07725 | 0.0001 |
Multiple Breakpoint Tests | |||
---|---|---|---|
Bai–Perron Tests of L+1 vs. L Sequentially Determined Breaks | |||
Break Test Options: Trimming 0.15, Max. Breaks 5, Sig. Level 0.05 | |||
Sequential F-statistic determined breaks: | 2 | ||
Scaled | Critical | ||
Break Test | F-statistic | F-statistic | Value ** |
0 vs. 1 * | 21.39673 | 42.79346 | 11.47 |
1 vs. 2 * | 7.279554 | 14.55911 | 12.95 |
2 vs. 3 | 4.667017 | 9.334033 | 14.03 |
Break dates: | |||
Sequential | Repartition | ||
1 | 2012Q2 | 2012Q2 | |
2 | 2015Q3 | 2015Q3 |
Unrestricted Co-Integration Rank Test (Trace) | ||||
---|---|---|---|---|
Hypothesized | Trace | 0.05 | ||
No. of CE(s) | Eigenvalue | Statistic | Critical Value | Prob.** |
None | 0.226176 | 12.01652 | 20.26184 | 0.4473 |
At most 1 | 0.092458 | 3.298539 | 9.164546 | 0.5264 |
Hypothesized | Max. Eigenvalue | 0.05 | ||
No. of CE(s) | Eigenvalue | Statistic | Critical Value | Prob.** |
None | 0.226176 | 8.717976 | 15.89210 | 0.4647 |
At most 1 | 0.092458 | 3.298539 | 9.164546 | 0.5264 |
Method: Markov Switching Regression (BFGS/Marquardt Steps) | ||||
---|---|---|---|---|
Number of states: 2 | ||||
Initial probabilities obtained from ergodic solution | ||||
Ordinary standard errors and covariance using a numeric Hessian | ||||
Random search: 25 starting values with 10 iterations using 1 standard | ||||
deviation (rng = kn, seed = 1,560,858,386) | ||||
Convergence achieved after 28 iterations | ||||
Variable | Coefficient | Std. Error | z-Statistic | Prob. |
Regime 1 | ||||
LOGOP | 10,254.71 | 1877.429 | 5.462102 | 0.0000 |
C | 29,104.07 | 7933.635 | 3.668440 | 0.0002 |
Regime 2 | ||||
LOGOP | 21,525.61 | 6420.504 | 3.352635 | 0.0008 |
C | −30,461.34 | 29431.43 | −1.034993 | 0.3007 |
Constant Markov Transition Probabilities | ||||
---|---|---|---|---|
Sample: 2010Q1 2018Q4 | ||||
Included observations: 36 | ||||
P(i, k) = P(s(t) = k | s(t − 1) = i) | ||||
(row = i/column = j) | ||||
1 | 2 | |||
All periods | 1 | 0.975638 | 0.024362 | |
2 | 0.043480 | 0.956520 | ||
Expected duration: Constant Markov transition | ||||
probabilities | ||||
Sample: 2010Q1 2018Q4 | ||||
Included observations: 36 | ||||
Constant expected durations: | ||||
1 | 2 | |||
All periods | 41.04773 | 22.9920 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phoong, S.W.; Phoong, S.Y.; Phoong, K.H. Analysis of Structural Changes in Financial Datasets Using the Breakpoint Test and the Markov Switching Model. Symmetry 2020, 12, 401. https://doi.org/10.3390/sym12030401
Phoong SW, Phoong SY, Phoong KH. Analysis of Structural Changes in Financial Datasets Using the Breakpoint Test and the Markov Switching Model. Symmetry. 2020; 12(3):401. https://doi.org/10.3390/sym12030401
Chicago/Turabian StylePhoong, Seuk Wai, Seuk Yen Phoong, and Kok Hau Phoong. 2020. "Analysis of Structural Changes in Financial Datasets Using the Breakpoint Test and the Markov Switching Model" Symmetry 12, no. 3: 401. https://doi.org/10.3390/sym12030401
APA StylePhoong, S. W., Phoong, S. Y., & Phoong, K. H. (2020). Analysis of Structural Changes in Financial Datasets Using the Breakpoint Test and the Markov Switching Model. Symmetry, 12(3), 401. https://doi.org/10.3390/sym12030401