Fundamental Solutions for the Coupled KdV System and Its Stability
Abstract
:1. Introduction
2. Summary of the -Expansion Method
- If then
- If then
- If then
- If then
Stability Analysis
3. The Exact Solution of the Coupled KdV Equations
- Case I
- Case II
- From Case I, the exact solutions are given by
- From Case II
4. Numerical Results
5. Comparison
6. Conclusions
- Constructing some new solutions for coupled KdV equations, using the exp-function method.
- Studying the modulation instability to check the stability of the exact solutions.
- Implementing (numerically) the MMPDEs scheme to solve coupled KdV equations.
- Currently, work is in progress on the application of the proposed two schemes for further coupled systems of NPDEs.
Author Contributions
Funding
Conflicts of Interest
References
- Abdelrahman, M.A.E.; Kunik, M. The ultra-relativistic Euler equations. Math. Meth. Appl. Sci. 2015, 38, 1247–1264. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.E. On the shallow water equations. Z. Naturforsch. 2017, 72, 873–879. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.E.; Sohaly, M.A. The development of the deterministic nonlinear PDEs in particle physics to stochastic case. Results Phys. 2018, 9, 344–350. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.E.; Sohaly, M.A.; Alharbi, A.R. The new exact solutions for the deterministic and stochastic (2+1)-dimensional equations in natural sciences. J. Taibah. Univ. Sci. 2019, 13. [Google Scholar] [CrossRef] [Green Version]
- Abdelrahman, M.A.E.; Hassan, S.Z.; Inc, M. The coupled nonlinear Schrödinger-type equations. Mod. Phys. Lett. B 2020, 2050078. [Google Scholar] [CrossRef]
- Yaslan, H.C.; Girgin, E. New exact solutions for the conformable space-time fractional KdV, CDG, (2+1)-dimensional CBS and (2+1)-dimensional AKNS equations. J. Taibah Sci. 2019, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wazwaz, A.M.; Kaur, L. Optical solitons for nonlinear Schrödinger equation in the normal dispersive regimes. Optik 2019, 184, 428–435. [Google Scholar] [CrossRef]
- Alharbi, A.R.; Almatrafi, M.B. Riccati-Bernoulli sub-ODE approach on the partial differential equations and applications. Int. J. Math. Comput. Sci. 2020, 15, 367–388. [Google Scholar]
- Hassan, S.Z.; Abdelrahman, M.A.E. Solitary wave solutions for some nonlinear time fractional partial differential equations. Pramana-J. Phys. 2018, 91, 67. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.E.; Sohaly, M.A. On the new wave solutions to the MCH equation. Indian J. Phys. 2018, 93, 903–911. [Google Scholar] [CrossRef]
- Cattani, C.; Ciancio, A. Hybrid two scales mathematical tools for active particles modeling complex systems with learning hiding dynamics. Math. Mod. Meth. Appl. Sci. 2007, 17, 171–188. [Google Scholar] [CrossRef]
- Zhang, Y.; Cattani, Y.C.; Yang, X.J. Local fractional homotopy perturbation method for solving nonhomogeneous heat conduction equations in fractal domains. Entropy 2015, 17, 6753–6764. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.L.; Wang, M.L.; Wang, Y.M.; Fang, Z.D. The improved F-expansion method and its applications. Phys. Lett. A 2006, 350, 103–109. [Google Scholar] [CrossRef]
- Zhang, S.; Tong, J.L.; Wang, W. A generalized -expansion method for the mKdv equation with variable coefficients. Phys. Lett. A 2008, 372, 2254–2257. [Google Scholar] [CrossRef]
- Fan, E.; Zhang, H. A note on the homogeneous balance method. Phys. Lett. A 1998, 246, 403–406. [Google Scholar] [CrossRef]
- Dai, C.Q.; Zhang, J.F. Jacobian elliptic function method for nonlinear differential difference equations. Chaos Solut. Fractals 2006, 27, 1042–1049. [Google Scholar] [CrossRef]
- Aminikhad, H.; Moosaei, H.; Hajipour, M. Exact solutions for nonlinear partial differential equations via Exp-function method. Numer. Methods Partial. Differ. Equations 2009, 26, 1427–1433. [Google Scholar]
- Wazwaz, A.M. Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE method. Comput. Math. Appl. 2005, 50, 1685–1696. [Google Scholar] [CrossRef] [Green Version]
- Wazwaz, A.M. The tanh method for travelling wave solutions of nonlinear equations. Appl. Math. Comput. 2004, 154, 714–723. [Google Scholar]
- Hydon, P.E. Symmetry Methods for Differential Equations; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Yang, X.F.; Deng, Z.C.; Wei, Y. A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application. Adv. Diff. Equ. 2015, 1, 117–133. [Google Scholar] [CrossRef] [Green Version]
- Abdelrahman, M.A.E.; Sohaly, M.A. Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in stochastic input case. Eur. Phys. J. Plus 2017, 132, 339. [Google Scholar] [CrossRef]
- Huang, W.; Russell, R.D. The Adaptive Moving Mesh Methods; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Budd, C.J.; Huang, W.; Russell, R.D. Adaptivity with moving grids. Acta Numer. 2009, 18, 111–241. [Google Scholar] [CrossRef]
- Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer: New York, NY, USA, 2010. [Google Scholar]
- Gao, Y.T.; Tian, B. Ion-acoustic shocks in space and laboratory dusty plasmas: Two-dimensional and non-traveling-wave observable effects. Phys. Plasmas 2001, 8, 3146. [Google Scholar] [CrossRef]
- Lou, S.Y. Symmetries of the KdV equation and four hierarchies of the integro-differential KdV equations. J. Math. Phys. 1994, 35, 2390–2396. [Google Scholar] [CrossRef]
- Wang, G.; Xu, T. Symmetry properties and explicit solutions of the nonlinear time fractional KDV equation. Bound. Value Probl. 2013, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hirota, R.; Satsuma, J. Soliton solutions of a coupled Korteweg-de Vries equation. Phys. Lett. A 1981, 85, 407–408. [Google Scholar] [CrossRef]
- Caom, D.B.; Yan, J.R.; Zang, Y. Exact solutions for a new coupled MKdV equations and a coupled KdV equations. Phys. Lett. A 2002, 297, 68–74. [Google Scholar]
- Ganji, D.D.; Rafei, M. Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation by homotopy perturbation method. Phys. Lett. A 2006, 356, 131–137. [Google Scholar] [CrossRef]
- Gokdogan, A.; Yildirim, A.; Merdan, M. Solving coupled KdV equations by differential transformation method. World Appl. Sci. J. 2012, 19, 1823–1828. [Google Scholar]
- Assas, L.M.B. Variational iteration method for solving coupled KdV equations. Chaos Solitons Fractals 2008, 38, 1225–1228. [Google Scholar] [CrossRef]
- Jaradat, H.M.; Syam, M.; Alquran, M. A two-mode coupled Korteweg–de Vries: multiple-soliton solutions and other exact solutions. Nonlinear Dyn. 2017, 90, 371–377. [Google Scholar] [CrossRef]
- Hassan, S.H.; Alyamani, N.A.; Abdelrahman, M.A.E. A construction of new traveling wave solutions for the 2D Ginzburg-Landau equation. Eur. Phys. J. Plus 2019, 134, 425. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability; Dover Publications Inc.: New York, NY, USA, 1981. [Google Scholar]
- Sandstede, B. Chapter 18—Stability of Travelling Waves. In Handbook of Dynamical Systems; Fiedler, Ed.; Elsevier: Amsterdam, The Netherlands, 2002; Volume 2, pp. 983–1055. [Google Scholar]
- Jafari, H.; Soltani, R.; Khalique, C.M.; Baleanu, D. Exact solutions of two nonlinear partial differential equations by using the first integral method. Bound. Value Probl. 2013, 2013, 117. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, A.R.; Almatrafi, M.B.; Abdelrahman, M.A.E. Analytical and numerical investigation for Kadomtsev-Petviashvili equation arising in plasma physics. Phys. Scr. 2020, 95, 4. [Google Scholar] [CrossRef]
- Russell, R.D.; Huang, W.; Ren, Y. Moving mesh partial differential equations (MMPDES) based on the equidistribution principle. Siam. J. Numer. Anal. 1994, 31, 709–730. [Google Scholar]
- Huang, W.; Russell, R.D. A high dimensional moving mesh strategy. Appl. Numer. Math. 1997, 26, 63–76. [Google Scholar] [CrossRef]
- Budd, C.J.; Williams, J.F. Moving mesh generation using the parabolic Monge-Ampere equation. SIAM J. Sci. Comput. 2009, 31, 3438–3465. [Google Scholar] [CrossRef]
- Alharbi, A.R.; Naire, S. An adaptive moving mesh method for thin film flow equations with surface tension. J. Comput. Appl. Math. 2017, 319, 365–384. [Google Scholar] [CrossRef]
- Alharbi, A.R.; Naire, S. An adaptive moving mesh method for two-dimensional thin film flow equations with surface tension. J. Comput. Appl. Math. 2019, 356, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, A.R. Numerical Solution of Thin-Film Flow Equations Using Adaptive Moving MESH methods. Ph.D. Thesis, Keele University, Keele, UK, 2016. [Google Scholar]
- Ceniceros, H.D.; Hou, T.Y. An efficient dynamically adaptive mesh for potentially singular solutions. J. Comput. Phys. 2001, 172, 609–639. [Google Scholar] [CrossRef] [Green Version]
- Cook, S.P. Adaptive Mesh Methods for Numerical Weather Prediction. Ph.D. Thesis, University of Bath, Bath, UK, 2016. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelrahman, M.A.E.; Almatrafi, M.B.; Alharbi, A. Fundamental Solutions for the Coupled KdV System and Its Stability. Symmetry 2020, 12, 429. https://doi.org/10.3390/sym12030429
Abdelrahman MAE, Almatrafi MB, Alharbi A. Fundamental Solutions for the Coupled KdV System and Its Stability. Symmetry. 2020; 12(3):429. https://doi.org/10.3390/sym12030429
Chicago/Turabian StyleAbdelrahman, Mahmoud A. E., M. B. Almatrafi, and Abdulghani Alharbi. 2020. "Fundamental Solutions for the Coupled KdV System and Its Stability" Symmetry 12, no. 3: 429. https://doi.org/10.3390/sym12030429
APA StyleAbdelrahman, M. A. E., Almatrafi, M. B., & Alharbi, A. (2020). Fundamental Solutions for the Coupled KdV System and Its Stability. Symmetry, 12(3), 429. https://doi.org/10.3390/sym12030429