Rightward Shift of Two-Channel NIRS-Defined Prefrontal Cortex Activity during Mental Arithmetic Tasks with Increasing Levels of State Anxiety
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Task
2.2.2. ECG Measurements
2.2.3. NIRS Measurements
2.3. Statistical Analysis
3. Results
3.1. STAI Scores, Task Performances and Cardiological Index
3.2. Oxyhemoflobin Levels
3.3. State Anxiety Levels Following Mental Arithmetic Tasks
3.3.1. Task Performance Scores
3.3.2. Cardiological Index
3.2.3 Oxyhemoglobin Levels
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sowell, E.R.; Thompson, P.M.; Holmes, C.J.; Jernigan, T.L.; Toga, A.W. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat. Neurosci. 1999, 2, 859–861. [Google Scholar] [CrossRef] [PubMed]
- Sowell, E.R.; Thompson, P.M.; Leonard, C.M.; Welcome, S.E.; Kan, E.; Toga, A.W. Longitudinal mapping of cortical thickness and brain growth in normal children. J. Neurosci. 2004, 24, 8223–8231. [Google Scholar] [CrossRef] [PubMed]
- Bishop, S.; Duncan, J.; Brett, M.; Lawrence, A.D. Prefrontal cortical function and anxiety: Controlling attention to threat-related stimuli. Nat. Neurosci. 2004, 7, 184–188. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.W., 3rd; Cohen, J.D.; Stenger, V.A.; Carter, C.S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 2000, 288, 1835–1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, J.; Owen, A.M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 2000, 23, 475–483. [Google Scholar] [CrossRef]
- Botvinick, M.; Nystrom, L.E.; Fissell, K.; Carter, C.S.; Cohen, J.D. Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 1999, 402, 179–181. [Google Scholar] [CrossRef]
- Ramnani, N.; Owen, A.M. Anterior prefrontal cortex: Insights into function from anatomy and neuroimaging. Nat. Rev. Neurosci. 2004, 5, 184–194. [Google Scholar] [CrossRef]
- Chahine, G.; Diekhof, E.K.; Tinnermann, A.; Gruber, O. On the role of the anterior prefrontal cortex in cognitive ‘branching’: An fMRI study. Neuropsychologia 2015, 77, 421–429. [Google Scholar] [CrossRef]
- Koechlin, E.; Corrado, G.; Pietrini, P.; Grafman, J. Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. Proc. Natl. Acad. Sci. USA 2000, 97, 7651–7656. [Google Scholar] [CrossRef] [Green Version]
- Braver, T.S.; Bongiolatti, S.R. The role of frontopolar cortex in subgoal processing during working memory. Neuroimage 2002, 15, 523–536. [Google Scholar] [CrossRef] [Green Version]
- Jones, N.A.; Fox, N.A. Electroencephalogram asymmetry during emotionally evocative films and its relation to positive and negative affectivity. Brain Cogn. 1992, 20, 280–299. [Google Scholar] [CrossRef]
- O’Doherty, J.; Kringelbach, M.L.; Rolls, E.T.; Hornak, J.; Andrews, C. Abstract reward and punishment representations in the human orbitofrontal cortex. Nat. Neurosci. 2001, 4, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Coan, J.A.; Allen, J.J. Frontal EEG asymmetry as a moderator and mediator of emotion. Biol. Psychol. 2004, 67, 7–49. [Google Scholar] [CrossRef] [PubMed]
- Harmon-Jones, E.; Sigelman, J. State anger and prefrontal brain activity: Evidence that insult-related relative left-prefrontal activation is associated with experienced anger and aggression. J. Personal. Soc. Psychol. 2001, 80, 797–803. [Google Scholar] [CrossRef]
- Harmon-Jones, E.; Gable, P.A.; Peterson, C.K. The role of asymmetric frontal cortical activity in emotion-related phenomena: A review and update. Biol. Psychol. 2010, 84, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Aoki, R.; Sato, H.; Katura, T.; Utsugi, K.; Koizumi, H.; Matsuda, R.; Maki, A. Relationship of negative mood with prefrontal cortex activity during working memory tasks: An optical topography study. Neurosci. Res. 2011, 70, 189–196. [Google Scholar] [CrossRef]
- Aoki, R.; Sato, H.; Katura, T.; Matsuda, R.; Koizumi, H. Correlation between prefrontal cortex activity during working memory tasks and natural mood independent of personality effects: An optical topography study. Psychiatry Res. 2013, 212, 79–87. [Google Scholar] [CrossRef]
- Sato, H.; Dresler, T.; Haeussinger, F.B.; Fallgatter, A.J.; Ehlis, A.C. Replication of the correlation between natural mood states and working memory-related prefrontal activity measured by near-infrared spectroscopy in a German sample. Front. Hum. Neurosci. 2014, 8, 37. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, S.; Matsuda, G.; Hiraki, K. Negative emotion modulates prefrontal cortex activity during a working memory task: A NIRS study. Front. Hum. Neurosci. 2014, 8, 46. [Google Scholar] [CrossRef]
- Han, K.M.; De Berardis, D.; Fornaro, M.; Kim, Y.K. Differentiating between bipolar and unipolar depression in functional and structural MRI studies. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 91, 20–27. [Google Scholar] [CrossRef]
- Tempesta, D.; Mazza, M.; Serroni, N.; Moschetta, F.S.; Di Giannantonio, M.; Ferrara, M.; De Berardis, D. Neuropsychological functioning in young subjects with generalized anxiety disorder with and without pharmacotherapy. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 45, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Ebisch, S.J.; Mantini, D.; Northoff, G.; Salone, A.; De Berardis, D.; Ferri, F.; Ferro, F.M.; Di Giannantonio, M.; Romani, G.L.; Gallese, V. Altered brain long-range functional interactions underlying the link between aberrant self-experience and self-other relationship in first-episode schizophrenia. Schizophr. Bull. 2014, 40, 1072–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eysenck, M.W.; Derakshan, N.; Santos, R.; Calvo, M.G. Anxiety and cognitive performance: Attentional control theory. Emotion 2007, 7, 336–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidano, T.; Fukuhara, M.; Iwawaki, M.; Soga, S.; Spielberger, C. State Trait Anxiety Inventory (Form JYZ). Test Manual. (Japanese Adaptation of STAI); Jitsumu Kyouiku Shuppan: Tokyo, Japan, 2000. [Google Scholar]
- Takizawa, R.; Nishimura, Y.; Yamasue, H.; Kasai, K. Anxiety and performance: The disparate roles of prefrontal subregions under maintained psychological stress. Cereb. Cortex 2014, 24, 1858–1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salmaso, D.; Longoni, A.M. Problems in the assessment of hand preference. Cortex 1985, 21, 533–549. [Google Scholar] [CrossRef]
- Wang, J.; Rao, H.; Wetmore, G.S.; Furlan, P.M.; Korczykowski, M.; Dinges, D.F.; Detre, J.A. Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress. Proc. Natl. Acad. Sci. USA 2005, 102, 17804–17809. [Google Scholar] [CrossRef] [Green Version]
- Dedovic, K.; Renwick, R.; Mahani, N.K.; Engert, V.; Lupien, S.J.; Pruessner, J.C. The montreal imaging stress task: Using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. J. Psychiatry Neurosci. 2005, 30, 319–325. [Google Scholar]
- Okamoto, M.; Dan, H.; Sakamoto, K.; Takeo, K.; Shimizu, K.; Kohno, S.; Oda, I.; Isobe, S.; Suzuki, T.; Kohyama, K.; et al. Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage 2004, 21, 99–111. [Google Scholar] [CrossRef]
- Davidson, R.J.; Fox, N.A. Asymmetrical brain activity discriminates between positive and negative affective stimuli in human infants. Science 1982, 218, 1235–1237. [Google Scholar] [CrossRef]
- Verner, M.; Herrmann, M.J.; Troche, S.J.; Roebers, C.M.; Rammsayer, T.H. Cortical oxygen consumption in mental arithmetic as a function of task difficulty: A near-infrared spectroscopy approach. Front. Hum. Neurosci. 2013, 7, 217. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, W.; Sato, M.; Fukuda, Y.; Matsumoto, T.; Takemura, N.; Sakatani, K. Correlation between asymmetry of spontaneous oscillation of hemodynamic changes in the prefrontal cortex and anxiety levels: A near-infrared spectroscopy study. J. Biomed. Opt. 2014, 19, 027005. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xu, H.; Lu, S. Neural basis of depression related to a dominant right hemisphere: A resting state fMRI study. Behav. Neurol. 2018, 2018, 5024520. [Google Scholar] [CrossRef] [PubMed]
- Baik, S.Y.; Kim, J.Y.; Choi, J.; Baek, J.Y.; Park, Y.; Kim, Y.; Jung, M.; Lee, S.H. Prefrontal asymmetry during cognitive tasks and its relationship with suicide ideation in major depressive disorder: An fNIRS study. Diagnostics 2019, 9, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruder, G.E.; Stewart, J.W.; McGrath, P.J. Right brain, left brain in depressive disorders: Clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings. Neurosci. Biobehav. Rev. 2017, 78, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Bruder, G.E.; Alvarenga, J.; Abraham, K.; Skipper, J.; Warner, V.; Voyer, D.; Peterson, B.S.; Weissman, M.M. Brain laterality, depression and anxiety disorders: New findings for emotional and verbal dichotic listening in individuals at risk for depression. Laterality 2016, 21, 525–548. [Google Scholar] [CrossRef] [PubMed]
- Alves, N.T.; Fukusima, S.S.; Aznar-Casanova, J.A. Models of brain asymmetry in emotional processing. Psychol. Neurosci. 2008, 1, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Hu, D.; Shen, H.; Zhou, Z. Functional asymmetry in the cerebellum: A brief review. Cerebellum 2008, 7, 304–313. [Google Scholar] [CrossRef]
- Ashwell, K.; Mai, J. Fetal development of the central nervous system. In The Human Nervous System, 3rd ed.; Elsevier Academic Press: San Diego, CA, USA, 2012. [Google Scholar]
- Moustafa, A.A.; Tindle, R.; Ansari, Z.; Doyle, M.J.; Hewedi, D.H.; Eissa, A. Mathematics, anxiety, and the brain. Rev. Neurosci. 2017, 28, 417–429. [Google Scholar] [CrossRef]
- Tseng, Y.L.; Lu, C.F.; Wu, S.M.; Shimada, S.; Huang, T.; Lu, G.Y. A functional near-infrared spectroscopy study of state anxiety and auditory working memory load. Front. Hum. Neurosci. 2018, 12, 313. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. A model of neurovisceral integration in emotion regulation and dysregulation. J. Affect. Disord. 2000, 61, 201–216. [Google Scholar] [CrossRef] [Green Version]
- Barbas, H.; Saha, S.; Rempel-Clower, N.; Ghashghaei, T. Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression. BMC Neurosci. 2003, 4, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brugnera, A.; Zarbo, C.; Adorni, R.; Tasca, G.A.; Rabboni, M.; Bondi, E.; Compare, A.; Sakatani, K. Cortical and cardiovascular responses to acute stressors and their relations with psychological distress. Int. J. Psychophysiol. 2017, 114, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Hembree, R. The nature, effects, and relief of mathematics anxiety. J. Affect. Disord. 2000, 61, 201–216. [Google Scholar] [CrossRef]
n | CONT Task | EX Task | P Value | |||||
---|---|---|---|---|---|---|---|---|
Task performance scores | ||||||||
Number of correct responses | 26 | 11.7 | ± | 0.7 | 5.3 | ± | 2.3 | 0.000 ** |
Number of error responses | 26 | 0.1 | ± | 0.3 | 3.6 | ± | 2.6 | 0.000 ** |
Reaction time | 26 | 2.2 | ± | 0.5 | 8.1 | ± | 0.9 | 0.000 ** |
Cardiological index | ||||||||
HR (% of change during task sets) | 24 | 100.1 | ± | 7.3 | 103.5 | ± | 8.9 | 0.167 |
CONT task | EX task | vs. EX/Low (Scheffe’s Test) | ||||||
---|---|---|---|---|---|---|---|---|
EX/Low anxiety group (n = 10) | ||||||||
Task performance scores | ||||||||
Number of correct responses | 11.4 | ± | 1.1 | 6.6 | ± | 2.7 ** | − | |
Number of error response | 0.2 | ± | 0.4 | 2.1 | ± | 1.6 * | − | |
Reaction time | 2.1 | ± | 0.4 | 7.5 | ± | 1.2 ** | − | |
Cardiological index | ||||||||
HR (% change during task sets) | 101.7 | ± | 4.8 | 102.2 | ± | 5.2 | − | |
Oxyhemoglobin levels | ||||||||
Left hemisphere | 0.007 | ± | 0.013 | 0.034 | ± | 0.070 | − | |
Right hemisphere | 0.018 | ± | 0.028 | 0.048 | ± | 0.045 | − | |
Laterality Index (LI) | −0.989 | ± | 3.719 | −0.311 | ± | 0.583 | − | |
EX/Moderate anxiety group (n = 11) | ||||||||
Task performance scores | ||||||||
Number of correct responses | 12.0 | ± | 0 | 4.5 | ± | 1.6 ** | p < 0.025 | |
Number of error response | 0 | ± | 0 | 4.4 | ± | 3.1 ** | NS | |
Reaction time | 2.3 | ± | 0.6 | 8.5 | ± | 0.4 ** | NS | |
Cardiological index | ||||||||
HR (% change during task sets) | 97.9 | ± | 6.7 | 105.8 | ± | 10.8 | NS | |
Oxyhemoglobin levels | ||||||||
Left hemisphere | −0.002 | ± | 0.034 | 0.057 | ± | 0.049 ** | NS | |
Right hemisphere | −0.002 | ± | 0.036 | 0.076 | ± | 0.072 ** | NS | |
Laterality Index (LI) | 0.135 | ± | 0.772 | 0.177 | ± | 0.437 | NS | |
EX/High anxiety group (n = 3) | ||||||||
Task performance scores | ||||||||
Number of correct responses | 12.0 | ± | 0 | 4.3 | ± | 1.5 * | p < 0.05 | |
Number of error response | 0 | ± | 0 | 5.0 | ± | 1.7 * | NS | |
Reaction time | 2.4 | ± | 0.6 | 8.1 | ± | 0.7 ** | NS | |
Cardiological index | ||||||||
HR (% change during task sets) | 98.7 | ± | 9.5 | 105.1 | ± | 13.1 | NS | |
Oxyhemoglobin levels | ||||||||
Left hemisphere | 0.028 | ± | 0.015 | 0.054 | ± | 0.028 | NS | |
Right hemisphere | 0.018 | ± | 0.002 | 0.057 | ± | 0.016 * | NS | |
Laterality Index (LI) | −0.129 | ± | 0.376 | 0.049 | ± | 0.327 | NS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horiuchi-Hirose, M.; Sawada, K. Rightward Shift of Two-Channel NIRS-Defined Prefrontal Cortex Activity during Mental Arithmetic Tasks with Increasing Levels of State Anxiety. Symmetry 2020, 12, 538. https://doi.org/10.3390/sym12040538
Horiuchi-Hirose M, Sawada K. Rightward Shift of Two-Channel NIRS-Defined Prefrontal Cortex Activity during Mental Arithmetic Tasks with Increasing Levels of State Anxiety. Symmetry. 2020; 12(4):538. https://doi.org/10.3390/sym12040538
Chicago/Turabian StyleHoriuchi-Hirose, Miwa, and Kazuhiko Sawada. 2020. "Rightward Shift of Two-Channel NIRS-Defined Prefrontal Cortex Activity during Mental Arithmetic Tasks with Increasing Levels of State Anxiety" Symmetry 12, no. 4: 538. https://doi.org/10.3390/sym12040538
APA StyleHoriuchi-Hirose, M., & Sawada, K. (2020). Rightward Shift of Two-Channel NIRS-Defined Prefrontal Cortex Activity during Mental Arithmetic Tasks with Increasing Levels of State Anxiety. Symmetry, 12(4), 538. https://doi.org/10.3390/sym12040538