A New Version of the Hermite–Hadamard Inequality for Riemann–Liouville Fractional Integrals
Abstract
:1. Introduction
2. The New Hermite–Hadamard Inequality
3. Examples
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lakshmikantham, V.; Leela, S. Differential and Integral Inequalities: Theory and Applications: Volume I: Ordinary Differential Equations; Academic Press: New York, NY, USA, 1969. [Google Scholar]
- Walter, W. Differential and Integral Inequalities (Vol. 55); Springer: New York, NY, USA, 1964. [Google Scholar]
- Agarwal, P.; Tariboon, J.; Ntouyas, S.K. Some generalized Riemann-Liouville k-fractional integral inequalities. J. Inequal. Appl. 2016, 2016, 122. [Google Scholar] [CrossRef] [Green Version]
- Anastassiou, G.A. Opial type inequalities involving Riemann–Liouville fractional derivatives of two functions with applications. Math. Comput. Model. 2008, 48, 344–374. [Google Scholar] [CrossRef]
- Denton, Z.; Vatsala, A.S. Fractional integral inequalities and applications. Comput. Math. Appl. 2010, 59, 1087–1094. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Feckan, M.; Wang, J. Fractional integral inequalities for differential convex mappings and applications to special means and a midpoint formula. J. Appl. Math. Stat. Inform. 2012, 8, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science Inc.: New York, NY, USA, 2006. [Google Scholar]
- Miller, S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley & Sons: New York, NY, USA, 1993. [Google Scholar]
- Hadamard, J. Etude sur les proprietes des fonctions entieres et en particulier d’une fonction considree par, Riemann. J. Math. Pures. Appl. 1893, 58, 171–215. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, P.O. On New Trapezoid Type Inequalities for h-convex Functions via Generalized Fractional Integral. Turkish J. Anal. Number Theory 2018, 6, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yildirim, H. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2017, 17, 1049–1059. [Google Scholar] [CrossRef]
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Sarikaya, M.Z. On generalized fractional integral inequalities for twice differentiable convex functions. J. Comput. Appl. Math. 2020, 372, 112740. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T. Modification of certain fractional integral inequalities for convex functions. Adv. Differ. Equ. 2020, 2020, 69. [Google Scholar] [CrossRef]
- Fernandez, A.; Mohammed, P.O. Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Meth. Appl. Sci. 2020, 1–18. [Google Scholar] [CrossRef]
- Gavrea, B.; Gavrea, I. On some Ostrowski type inequalities. Gen. Math. 2010, 18, 33–44. [Google Scholar]
- Qi, F.; Mohammed, P.O.; Yao, J.C.; Yao, Y.H. Generalized fractional integral inequalities of Hermite–Hadamard type for (α,m)-convex functions. J. Inequal. Appl. 2019, 2019, 135. [Google Scholar] [CrossRef] [Green Version]
- Dinu, C. Hermite-Hadamard Inequality on Time Scales. J. Inequal. Appl. 2008, 2008, 287947. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, P.O. Inequalities of Type Hermite-Hadamard for Fractional Integrals via Differentiable Convex Functions. Turkish J. Anal. Number Theory 2016, 4, 135–139. [Google Scholar]
- Mohammed, P.O. Inequalities of (k, s), (k, h)-Type For Riemann-Liouville Fractional Integrals. Appl. Math. E-Notes 2017, 17, 199–206. [Google Scholar]
- Mohammed, P.O. Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates. J. King Saud Univ. Sci. 2018, 30, 258–262. [Google Scholar] [CrossRef]
- Mohammed, P.O. Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function. Math. Meth. Appl. Sci. 2019, 1–11. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Sarikaya, M.Z. Hermite-Hadamard type inequalities for ϝ-convex function involving fractional integrals. J. Inequal. Appl. 2018, 2018, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarikaya, M.Z.; Yaldiz, H. On generalization integral inequalities for fractional integrals. Nihonkai Math. J. 2014, 25, 93–104. [Google Scholar]
- Sarikaya, M.Z.; Yaldiz, H.; Basak, N. New fractional inequalities of Ostrowski-Grüss type. Le Mat. 2014, LXIX, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Milton, K.A.; Parashar, P.; Brevik, I.; Kennedy, G. Self-stress on a dielectric ball and Casimir-Polder forces. Ann. Phys. (N. Y.) 2020, 412, 168008. [Google Scholar] [CrossRef]
- Parashar, P.; Milton, K.A.; Shajesh, K.V.; Brevik, I. Electromagnetic delta-function sphere. Phys. Rev. D 2017, 96, 085010. [Google Scholar] [CrossRef] [Green Version]
- Brevik, I.; Marachevsky, V.N. Casimir surface force on a dilute dielectric ball. Phys. Rev. D 1999, 60, 085006. [Google Scholar] [CrossRef] [Green Version]
- Watson, G.N. A Treatise on the Theory of Bessel Functions; Cambridge University Press: Cambridge, UK, 1944. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, P.O.; Brevik, I. A New Version of the Hermite–Hadamard Inequality for Riemann–Liouville Fractional Integrals. Symmetry 2020, 12, 610. https://doi.org/10.3390/sym12040610
Mohammed PO, Brevik I. A New Version of the Hermite–Hadamard Inequality for Riemann–Liouville Fractional Integrals. Symmetry. 2020; 12(4):610. https://doi.org/10.3390/sym12040610
Chicago/Turabian StyleMohammed, Pshtiwan Othman, and Iver Brevik. 2020. "A New Version of the Hermite–Hadamard Inequality for Riemann–Liouville Fractional Integrals" Symmetry 12, no. 4: 610. https://doi.org/10.3390/sym12040610
APA StyleMohammed, P. O., & Brevik, I. (2020). A New Version of the Hermite–Hadamard Inequality for Riemann–Liouville Fractional Integrals. Symmetry, 12(4), 610. https://doi.org/10.3390/sym12040610