Fixed Point Theorems Applied in Uncertain Fractional Differential Equation with Jump
Abstract
:1. Introduction
- (i)
- (ii)
- has stationary and independent increments,
- (iii)
- For any given every increment is a jump uncertain variable for , whose uncertainty distribution is
2. Fractional Order Derivatives
3. Main Results
3.1. Two Types of Uncertain FDEs with Jump in the One-Dimensional Case
3.2. Existence and Uniqueness of Uncertain FDEs with Jump in the Multidimensional Case
3.3. Application
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Wiener, N. Differential space. J. Math. Phys. 1923, 2, 131–174. [Google Scholar] [CrossRef]
- Itô, K. Stochastic integral. Proc. Jpn. Acad. Ser. A 1944, 20, 519–524. [Google Scholar] [CrossRef]
- Black, F.; Scholes, M. The pricing of option and corporate liabilities. J. Political Econ. 1973, 81, 637–654. [Google Scholar] [CrossRef] [Green Version]
- Gray, A.; Greenhalgh, D.; Mao, X.; Pan, J. A stochastic differential equation SIS epidemic model. SIAM J. Appl. Math. 2011, 71, 876–902. [Google Scholar] [CrossRef] [Green Version]
- Liu, B. Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty; Springer: Berlin, Germany, 2010. [Google Scholar]
- Liu, B. Fuzzy process, hybrid process and uncertain process. J. Uncertain Syst. 2008, 2, 3–16. [Google Scholar]
- Liu, B. Some research problems in uncertainty theory. J. Uncertain Syst. 2009, 1, 3–10. [Google Scholar]
- Chen, X.; Liu, B. Existence and uniqueness theorem for uncertain differential equations. Fuzzy Optim. Decis. Mak. 2010, 9, 69–81. [Google Scholar] [CrossRef]
- Yao, K.; Gao, J.; Gao, Y. Some stability theorems of uncertain differential equation. Fuzzy Optim. Decis. Mak. 2013, 12, 3–13. [Google Scholar] [CrossRef]
- Liu, H.; Ke, H.; Fei, W. Almost sure stability for uncertain differential equation. Fuzzy Optim. Decis. Mak. 2014, 13, 463–473. [Google Scholar] [CrossRef]
- Sheng, Y.; Wang, C. Stability in p-th moment for uncertain differential equation. J. Intell. Fuzzy Syst. 2014, 26, 1263–1271. [Google Scholar] [CrossRef]
- Yao, K.; Ke, H.; Sheng, Y. Stability in mean for uncertain differential equation. Fuzzy Optim. Decis. Mak. 2015, 14, 365–379. [Google Scholar] [CrossRef]
- Sheng, Y.; Gao, J. Exponential stability of uncertain differential equation. Soft Comput. 2016, 20, 3673–3678. [Google Scholar] [CrossRef]
- Yang, X.; Ni, Y.; Zhang, Y. Stability in inverse distribution for uncertain differential equtions. J. Intell. Fuzzy Syst. 2017, 32, 2051–2059. [Google Scholar] [CrossRef] [Green Version]
- Yao, K.; Chen, X. A numerical method for solving uncertain differential equations. J. Intell. Fuzzy Syst. 2013, 25, 825–832. [Google Scholar] [CrossRef]
- Zhu, Y. Uncertain optimal control with application to a portfolio selection model. Cybern. Syst. 2010, 41, 535–547. [Google Scholar] [CrossRef]
- Ge, X.; Zhu, Y. A necessary condition of optimality for uncertain optimal control problem. Fuzzy Optim. Decis. Mak. 2013, 12, 41–51. [Google Scholar] [CrossRef]
- Yang, X.; Gao, J. Uncertain differential games with application to capitalism. J. Uncertain. Anal. Appl. 2013, 1, 17. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Gao, J. Linear-quadratic uncertain differential games with application to resource extraction problem. IEEE Trans. Fuzzy Syst. 2016, 24, 819–826. [Google Scholar] [CrossRef]
- Gao, R. Uncertain wave equation with infinite half-boundary. Appl. Math. Comput. 2017, 304, 28–40. [Google Scholar] [CrossRef]
- Gao, R.; Ralescu, D.A. Uncertain wave equation for vibrating string. IEEE Trans. Fuzzy Syst. 2019, 27, 1323–1331. [Google Scholar] [CrossRef]
- Gao, R.; Ma, N.; Sun, G. Stability of solution for uncertain wave equation. Appl. Math. Comput. 2019, 365, 469–478. [Google Scholar] [CrossRef]
- Gao, R.; Liu, K.; Li, Z.; Lv, R. American barrier option pricing formulas for stock model in uncertain environment. IEEE Access 2019, 7, 97846–97856. [Google Scholar] [CrossRef]
- Yao, K. Uncertainty Differential Equation; Springer: Berlin, Germany, 2016. [Google Scholar]
- Deng, L.; Zhu, Y. Uncertain optimal control with jump. ICIC Express Lett. Part B Appl. 2012, 3, 419–424. [Google Scholar]
- Jacobsen, M. Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes; Springer Science and Business Media: Boston, MA, USA, 2006. [Google Scholar]
- Deng, L.; Zhu, Y. Existence and uniqueness theorem of solution for uncertain differential equations with jump. ICIC Express Lett. 2012, 6, 2693–2698. [Google Scholar]
- Deng, L. Multidimensional uncertain optimal control of linear quadratic models with jump. J. Comput. Inf. Syst. 2012, 8, 7441–7448. [Google Scholar]
- Deng, L.; Zhu, Y. An uncertain optimal control model with n jumps and application. Comput. Sci. Inf. Syst. 2012, 9, 1453–1468. [Google Scholar] [CrossRef]
- Deng, L.; Zhu, Y. Uncertain optimal control of linear quadratic models with jump. Math. Comput. Model. 2013, 57, 2432–2441. [Google Scholar] [CrossRef]
- Deng, L.; Chen, Y. Optimistic value model of uncertain linear quadratic optimal control with jump. J. Adv. Comput. Intell. Intell. Inform. 2016, 20, 189–196. [Google Scholar] [CrossRef]
- Deng, L.; Chen, Y. Optimal control of uncertain systems with jump under optimistic value criterion. Eur. J. Control. 2017, 38, 7–15. [Google Scholar] [CrossRef]
- Deng, L.; You, Z.; Chen, Y. Optimistic value model of multidimensional uncertain optimal control with jump. Eur. J. Control. 2018, 39, 1–7. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Application of Fractional Differential Equation; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Zhu, Y. Uncertain FDEs and an interest rate model. Math. Method Appl. Sci. 2015, 38, 3359–3368. [Google Scholar] [CrossRef]
- Zhu, Y. Exitence and uniquence of the solution to uncertain fractional differential equation. J. Uncertain. Anal. Appl. 2015, 3, 5. [Google Scholar] [CrossRef]
- Lu, Z.; Yan, H.; Zhu, Y. European option pricing model based on uncertain fractional differential equation. Fuzzy Optim. Decis. Mak. 2018, 18, 199–217. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, Y. Numerical approach for solution to an uncertain fractional differential equation. Appl. Math. Comput. 2019, 343, 137–148. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, Y. Comparison principles for fractional differential equations with the Caputo derivatives. Adv. Differ. Equ. 2018, 2018, 237. [Google Scholar] [CrossRef] [Green Version]
- Jin, T.; Sun, Y.; Zhu, Y. Extreme values for solution to uncertain fractional differential equation and application to American option pricing model. Phys. A Stat. Mech. Appl. 2019, 534, 122357. [Google Scholar] [CrossRef]
- Lu, Q.; Zhu, Y.; Lu, Z. Uncertain fractional forward difference equations for Riemann-Liouville type. Adv. Differ. Equ. 2019, 2019, 147. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Zhu, Y. Finite-time stability of uncertain fractional difference equations. Fuzzy Optim. Decis. Mak. 2020, 19, 239–249. [Google Scholar] [CrossRef]
- Chen, X.; Gao, J. Uncertain term structure model of interest rate. Soft Comput. 2013, 17, 597–604. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Z.; Liu, X.; Li, C. Fixed Point Theorems Applied in Uncertain Fractional Differential Equation with Jump. Symmetry 2020, 12, 765. https://doi.org/10.3390/sym12050765
Jia Z, Liu X, Li C. Fixed Point Theorems Applied in Uncertain Fractional Differential Equation with Jump. Symmetry. 2020; 12(5):765. https://doi.org/10.3390/sym12050765
Chicago/Turabian StyleJia, Zhifu, Xinsheng Liu, and Cunlin Li. 2020. "Fixed Point Theorems Applied in Uncertain Fractional Differential Equation with Jump" Symmetry 12, no. 5: 765. https://doi.org/10.3390/sym12050765