A Two-Parameter Modified Logistic Map and Its Application to Random Bit Generation
Abstract
:1. Introduction
2. The Proposed Map
3. Application to Random Bit Generation
- Step 1.
- First, two modified logistic maps , one classic logistic map , as well as two bit sequences are initialized, and the maps’ parameters are chosen.
- Step 2.
- In every iteration, the decimal part of is compared to the decimal part of and depending on the result a 0 or 1 is produced and saved in . Similarly, the decimal part of is compared to the decimal part of and depending on the result a 0 or 1 is produced and saved in .
- Step 3.
- For every 10 iterations, the value of the logistic map is compared to the decimal part of . Depending on the result, a bit reversal is performed on the last ten digits of b or d.
- Step 4.
- Once the desired bitstream length is reached, the obtained sequence is computed using .
Algorithm 1 The Proposed Random Bit Generator. |
Data: Initialize initial conditions: , parameter values: , Bit subsequences and bitstream length: ℓ. |
|
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Strogatz, S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Volos, C.K.; Kyprianidis, I.M.; Stouboulos, I.N. Image encryption process based on chaotic synchronization phenomena. Signal Process. 2013, 93, 1328–1340. [Google Scholar] [CrossRef]
- Huang, X.; Liu, L.; Li, X.; Yu, M.; Wu, Z. A New Pseudorandom Bit Generator Based on Mixing Three-Dimensional Chen Chaotic System with a Chaotic Tactics. Complexity 2019, 6567198. [Google Scholar] [CrossRef] [Green Version]
- Moysis, L.; Petavratzis, E.; Volos, C.; Nistazakis, H.; Stouboulos, I. A chaotic path planning generator based on logistic map and modulo tactics. Robot. Auton. Syst. 2020, 124, 103377. [Google Scholar] [CrossRef]
- Nepomuceno, E.G.; Lima, A.M.; Arias-García, J.; Perc, M.; Repnik, R. Minimal digital chaotic system. Chaos Solitons Fractals 2019, 120, 62–66. [Google Scholar] [CrossRef]
- Wang, H.; Song, B.; Liu, Q.; Pan, J.; Ding, Q. FPGA design and applicable analysis of discrete chaotic maps. Int. J. Bifurc. Chaos 2014, 24, 1450054. [Google Scholar] [CrossRef]
- May, R.M. Simple mathematical models with very complicated dynamics. Nature 1976, 261, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Ausloos, M.; Dirickx, M. The Logistic Map and the Route to Chaos: From the Beginnings to Modern Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Han, C. An image encryption algorithm based on modified logistic chaotic map. Optik 2019, 181, 779–785. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Ma, J.; He, H. A pseudorandom number generator based on piecewise logistic map. Nonlinear Dyn. 2016, 83, 2373–2391. [Google Scholar] [CrossRef]
- Murillo-Escobar, M.; Cruz-Hernández, C.; Cardoza-Avendaño, L.; Méndez-Ramírez, R. A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 2017, 87, 407–425. [Google Scholar] [CrossRef]
- Radwan, A.G. On some generalized discrete logistic maps. J. Adv. Res. 2013, 4, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Miao, S.; Hu, H.; Deng, Y. Pseudorandom bit generator based on non-stationary logistic maps. IET Inf. Secur. 2016, 10, 87–94. [Google Scholar] [CrossRef]
- Liu, L.; Miao, S. A new image encryption algorithm based on logistic chaotic map with varying parameter. SpringerPlus 2016, 5, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.L.; Hwang, T.; Lin, W.W. Randomness enhancement using digitalized modified logistic map. IEEE Trans. Circuits Syst. II Express Briefs 2010, 57, 996–1000. [Google Scholar]
- Borujeni, S.E.; Ehsani, M.S. Modified logistic maps for cryptographic application. Appl. Math. 2015, 6, 773. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yin, B.; Ding, W.; Zhang, T.; Ma, Y. A nonlinearly modulated logistic map with delay for image encryption. Electronics 2018, 7, 326. [Google Scholar] [CrossRef] [Green Version]
- Irfan, M.; Ali, A.; Khan, M.A.; Ehatisham-ul Haq, M.; Mehmood Shah, S.N.; Saboor, A.; Ahmad, W. Pseudorandom Number Generator (PRNG) Design Using Hyper-Chaotic Modified Robust Logistic Map (HC-MRLM). Electronics 2020, 9, 104. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Doja, M.; Beg, M.S. A new chaotic map based secure and efficient pseudo-random bit sequence generation. In Proceedings of the International Symposium on Security in Computing and Communication, Bangalore, India, 19–22 September 2018; pp. 543–553. [Google Scholar]
- Ge, R.; Yang, G.; Wu, J.; Chen, Y.; Coatrieux, G.; Luo, L. A Novel Chaos-Based Symmetric Image Encryption Using Bit-Pair Level Process. IEEE Access 2019, 7, 99470–99480. [Google Scholar] [CrossRef]
- François, M.; Grosges, T.; Barchiesi, D.; Erra, R. Pseudo-random number generator based on mixing of three chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 887–895. [Google Scholar] [CrossRef]
- Alawida, M.; Samsudin, A.; Teh, J.S. Enhanced digital chaotic maps based on bit reversal with applications in random bit generators. Inf. Sci. 2020, 512, 1155–1169. [Google Scholar] [CrossRef]
- Wang, X.Y.; Xie, Y.X. A design of pseudo-random bit generator based on single chaotic system. Int. J. Mod. Phys. C 2012, 23, 1250024. [Google Scholar] [CrossRef]
- Patidar, V.; Sud, K.K.; Pareek, N.K. A pseudo random bit generator based on chaotic logistic map and its statistical testing. Informatica 2009, 33, 441–452. [Google Scholar]
- Stojanovski, T.; Kocarev, L. Chaos-based random number generators-part I: analysis [cryptography]. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 2001, 48, 281–288. [Google Scholar] [CrossRef]
- Volos, C.; Kyprianidis, I.; Stouboulos, I. Experimental investigation on coverage performance of a chaotic autonomous mobile robot. Robot. Auton. Syst. 2013, 61, 1314–1322. [Google Scholar] [CrossRef]
- Hamza, R. A novel pseudo random sequence generator for image-cryptographic applications. J. Inf. Secur. Appl. 2017, 35, 119–127. [Google Scholar] [CrossRef]
- Nepomuceno, E.G.; Nardo, L.G.; Arias-Garcia, J.; Butusov, D.N.; Tutueva, A. Image encryption based on the pseudo-orbits from 1D chaotic map. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 061101. [Google Scholar] [CrossRef]
- Tutueva, A.V.; Nepomuceno, E.G.; Karimov, A.I.; Andreev, V.S.; Butusov, D.N. Adaptive chaotic maps and their application to pseudo-random numbers generation. Chaos Solitons Fractals 2020, 133, 109615. [Google Scholar] [CrossRef]
- Akgül, A.; Arslan, C.; Arıcıoğlu, B. Design of an Interface for Random Number Generators based on Integer and Fractional Order Chaotic Systems. Chaos Theory Appl. 2019, 1, 1–18. [Google Scholar]
- Khanzadi, H.; Eshghi, M.; Borujeni, S.E. Image encryption using random bit sequence based on chaotic maps. Arab. J. Sci. Eng. 2014, 39, 1039–1047. [Google Scholar] [CrossRef] [Green Version]
- Andrecut, M. Logistic map as a random number generator. Int. J. Mod. Phys. B 1998, 12, 921–930. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, H. Pseudo-Random Number Generator Based on Logistic Chaotic System. Entropy 2019, 21, 960. [Google Scholar] [CrossRef] [Green Version]
- Meranza-Castillón, M.; Murillo-Escobar, M.; López-Gutiérrez, R.; Cruz-Hernández, C. Pseudorandom number generator based on enhanced Hénon map and its implementation. AEU-Int. J. Electron. Commun. 2019, 107, 239–251. [Google Scholar] [CrossRef]
- Persohn, K.; Povinelli, R.J. Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation. Chaos Solitons Fractals 2012, 45, 238–245. [Google Scholar] [CrossRef]
- Phatak, S.; Rao, S.S. Logistic map: A possible random-number generator. Phys. Rev. E 1995, 51, 3670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volos, C.K.; Kyprianidis, I.; Stouboulos, I. Text Encryption Scheme Realized with a Chaotic Pseudo-Random Bit Generator. J. Eng. Sci. Technol. Rev. 2013, 6, 9–14. [Google Scholar] [CrossRef]
- Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications; Technical Report; Booz-Allen and Hamilton Inc.: Mclean, VA, USA, 2001. [Google Scholar]
- Kahan, W. IEEE standard 754 for binary floating-point arithmetic. Lect. Notes Status IEEE 1996, 754, 11. [Google Scholar]
- Alvarez, G.; Li, S. Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 2006, 16, 2129–2151. [Google Scholar] [CrossRef] [Green Version]
- Butusov, D.N.; Karimov, A.I.; Pyko, N.S.; Pyko, S.A.; Bogachev, M.I. Discrete chaotic maps obtained by symmetric integration. Phys. A Stat. Mech. Its Appl. 2018, 509, 955–970. [Google Scholar] [CrossRef]
If , the Test is Successful | ||||
---|---|---|---|---|
No. | Statistical Test | p-Value | Proportion | Result |
1 | Frequency | 0.289667 | 49/50 | success |
2 | Block Frequency | 0.383827 | 48/50 | success |
3 | Cumulative Sums | 0.419021 | 49/50 | success |
4 | Runs | 0.122325 | 50/50 | success |
5 | Longest Run | 0.383827 | 50/50 | success |
6 | Rank | 0.616305 | 49/50 | success |
7 | FFT | 0.191687 | 49/50 | success |
8 | Non-Overlapping Template | 0.991468 | 49/50 | success |
9 | Overlapping Template | 0.739918 | 50/50 | success |
10 | Universal | 0.699313 | 50/50 | success |
11 | Approximate Entropy | 0.534146 | 50/50 | success |
12 | Random Excursions | 0.407091 | 32/32 | success |
13 | Random Excursions Variant | 0.066882 | 32/32 | success |
14 | Serial | 0.171867 | 50/50 | success |
15 | Linear Complexity | 0.911413 | 48/50 | success |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moysis, L.; Tutueva, A.; Volos, C.; Butusov, D.; Munoz-Pacheco, J.M.; Nistazakis, H. A Two-Parameter Modified Logistic Map and Its Application to Random Bit Generation. Symmetry 2020, 12, 829. https://doi.org/10.3390/sym12050829
Moysis L, Tutueva A, Volos C, Butusov D, Munoz-Pacheco JM, Nistazakis H. A Two-Parameter Modified Logistic Map and Its Application to Random Bit Generation. Symmetry. 2020; 12(5):829. https://doi.org/10.3390/sym12050829
Chicago/Turabian StyleMoysis, Lazaros, Aleksandra Tutueva, Christos Volos, Denis Butusov, Jesus M. Munoz-Pacheco, and Hector Nistazakis. 2020. "A Two-Parameter Modified Logistic Map and Its Application to Random Bit Generation" Symmetry 12, no. 5: 829. https://doi.org/10.3390/sym12050829
APA StyleMoysis, L., Tutueva, A., Volos, C., Butusov, D., Munoz-Pacheco, J. M., & Nistazakis, H. (2020). A Two-Parameter Modified Logistic Map and Its Application to Random Bit Generation. Symmetry, 12(5), 829. https://doi.org/10.3390/sym12050829