Type 2 Degenerate Poly-Euler Polynomials
Abstract
:1. Introduction
2. Type 2 Poly-Euler Polynomials and Numbers
3. The Type 2 Degenerate Poly-Euler Polynomials and Numbers
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carlitz, L. Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 1979, 15, 51–88. [Google Scholar]
- Carlitz, L. A degenerate Staudt-Clausen theorem. Arch. Math. 1956, 7, 28–33. [Google Scholar] [CrossRef]
- Araci, S.; Acikgoz, M. A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. Kyungshang 2012, 22, 399–406. [Google Scholar]
- Kim, D.S.; Kim, T. Higher-order Bernoulli and poly-Bernoulli mixed type polynomials. Georgian Math. J. 2015, 22, 265–272. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Kwon, J. Some identities on degenerate Genocchi and Euler numbers. Informatica 2020, 31, 42–51. [Google Scholar]
- Kim, D.S.; Kim, T. A note on a new type of degenerate Bernoulli numbers. Russ. J. Math. Phys. 2020, 27, 227–235. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. Degenerate polyexponential functions and degenerate Bell polynomials. J. Math. Anal. Appl. 2020, 487, 124017. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.S.; Kwon, J.K.; Lee, H.S. Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials. Adv. Differ. Equ. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Kim, H.Y.; Jang, L.C. Degenerate poly-Bernoulli numbers and polynomials. Informatica 2020, 31, 1–7. [Google Scholar]
- Kim, T.; Kim, D.S.; Lee, H.; Kwon, J. Degenerate binomial coefficients and degenerate hypergeometric functions. Adv. Differ. Equ. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Kim, T. Some identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials. Adv. Stud. Contemp. Math. Kyungshang 2010, 20, 23–28. [Google Scholar]
- Ono, M. New functional equations of finite multiple polylogarithms. Tohoku Math. J. 2020, 72, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Lewin, L. Polylogarithms and Associated Functions; With a Foreword by A. J. Van der Poorten; North-Holland Publishing Co.: Amsterdam, NY, USA, 1981. [Google Scholar]
- Qin, S. Fully degenerate poly-Genocchi polynomials. Pure Math. 2020, 10, 345–355. [Google Scholar] [CrossRef]
- Hamahata, Y. Poly-Euler polynomials and Arakwa-Kaneko type zeta function. Funct. Approx. 2014, 51, 7–22. [Google Scholar] [CrossRef]
- Kaneko, M. poly-Bernoulli numbers. J. Theor. Nombres Bordx. 1997, 9, 221–228. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T.; Ryoo, C.S. Generalized type 2 degenerate Euler numbers. Adv. Stud. Contemp. Math. Kyungshang 2020, 30, 165–169. [Google Scholar]
- Kim, D.S.; Kim, T. A note on polyexponential amd unipoly functions. Russ. J. Math. Phys. 2019, 26, 40–49. [Google Scholar] [CrossRef]
- Dolgy, D.V.; Jang, L.-C.; Kim, D.S.; Kim, T.; Seo, J.J. Differential equations associated with higher-order Bernoulli numbers of the second kind revisited. J. Anal. Appl. 2016, 14, 107–121. [Google Scholar]
- Kim, D.S.; Kim, T. An identity of symmetry for the degenerate Frobenius-Euler polynomials. Math. Solovaca 2018, 68, 239–243. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. Identities of symmetry for degenerate Euler polynomials and alternating generalized falling factorial sums. Iran J. Sci. Tecnol. Trans. A Sci. 2017, 41, 939–949. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Jang, G.W. Differential equations associated with degenerate Cauchy numbers. Iran J. Sci. Tecnol. Trans. A Sci. 2019, 43, 1021–1025. [Google Scholar] [CrossRef]
- Jeong, W.K. Some identities for degenerate cosine(sine)-Euler polynomials. Adv. Stud. Contemp. Math. Kyungshang 2020, 30, 155–164. [Google Scholar]
- Jeong, J.; Rim, S.-H.; Kim, B.M. On finite-times degenerate Cauchy numbers and polynomials. Adv. Differ. Equ. 2015, 2015, 321. [Google Scholar] [CrossRef] [Green Version]
- Khan, W.A.; Ahmad, M. Partially degenerate poly-Bernoulli polynomials associated with Hermite polynomials. Adv. Stud. Contemp. Math. Kyungshang 2018, 28, 487–496. [Google Scholar]
- Simsek, Y. Identities on the Changhee numbers and Apstol-type Daehee polynomials. Adv. Stud. Contemp. Math. Kyungshang 2017, 27, 199–212. [Google Scholar]
- Kilar, N.; Simsek, Y. Relations on Bernoulli and Euler polynomials related to trigonometric functions. Adv. Stud. Contemp. Math. Kyungshang 2019, 29, 191–198. [Google Scholar]
- Kim, T.; Kim, D.S. Some relations of two type 2 polynomials and discrete harmonic numbers and polynomials. Symmetry 2020, 12, 905. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Jang, L.-C.; Lee, H. Jindalrae and Gaenari numbers and polynomials in connection with Jindalrae-Stirling numbers. Adv. Differ. Equ. 2020, 2020, 1–19. [Google Scholar] [CrossRef]
- Bayad, A.; Hamahata, Y. Polylogarithms and poly-Bernoulli polynomials. Kyushu J. Math. 2012, 65, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Hardy, G.H. On a class a functions. Proc. Lond. Math. Soc. 1905, 3, 441–460. [Google Scholar] [CrossRef]
- Kurt, B.; Simsek, Y. On the Hermite based Genocchi polynomials. Adv. Stud. Contemp. Math. Kyungshang 2013, 23, 13–17. [Google Scholar]
- Jonquie‘re, A. Note sur la serie . Bull. Soc. Math. France 1889, 17, 142–152. [Google Scholar]
- Zagier, D. The Bloch-Wigner-Ramakrishnan polylogarithm function. Math. Ann. 1990, 286, 613–624. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.S.; Kim, H.K.; Jang, L.-C. Type 2 Degenerate Poly-Euler Polynomials. Symmetry 2020, 12, 1011. https://doi.org/10.3390/sym12061011
Lee DS, Kim HK, Jang L-C. Type 2 Degenerate Poly-Euler Polynomials. Symmetry. 2020; 12(6):1011. https://doi.org/10.3390/sym12061011
Chicago/Turabian StyleLee, Dae Sik, Hye Kyung Kim, and Lee-Chae Jang. 2020. "Type 2 Degenerate Poly-Euler Polynomials" Symmetry 12, no. 6: 1011. https://doi.org/10.3390/sym12061011
APA StyleLee, D. S., Kim, H. K., & Jang, L.-C. (2020). Type 2 Degenerate Poly-Euler Polynomials. Symmetry, 12(6), 1011. https://doi.org/10.3390/sym12061011