Hypnotizability-Related Asymmetries: A Review
Abstract
:1. Introduction
2. Behavior Studies
3. Neurophysiological Studies
3.1. EEG Alpha, Hypnotizability and the Right Hemisphere
3.2. Alpha Asymmetry, Hypnotizabiliy and Cognitive Flexibility
3.3. EEG Theta
3.4. EEG Beta and Gamma
3.5. Nonlinear Dynamical Analysis of the EEG
4. Neuroimaging
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hammond, D.C. A Review of the History of Hypnosis Through the Late 19th Century. Am. J. Clin. Hypn. 2013, 56, 174–191. [Google Scholar] [CrossRef] [PubMed]
- Erickson, M.H. The Collected Papers of Milton; Erickson, M.H., Ed.; Irvington Publishers Inc.: New York, NY, USA, 1980; Volume 1–4. [Google Scholar]
- Haley, J. An Interactional Explanation of Hypnosis. Int. J. Clin. Exp. Hypn. 2015, 63, 422–443. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.K.; Pekala, R.J.; Cummingsu, J. Trait factors, state effects, and hypnotizability. Int. J. Clin. Exp. Hypn. 1996, 44, 232–249. [Google Scholar] [CrossRef] [PubMed]
- Piccione, C.; Hilgard, E.R.; Zimbardo, P.G. On the degree of stability of measured hypnotizability over a 25-year period. J. Pers. Soc. Psychol. 1989, 56, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Crawford, H.J.; Harrison, D.W.; Kapelis, L. Visual Field Asymmetry in Facial Affect Perception: Moderating Effects of Hypnosis, Hypnotic Susceptibility Level, Absorption, and Sustained Attentional Abilities. Int. J. Neurosci. 1995, 82, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Crowson, J.J.; Conroy, A.M.; Chester, T.D. Hypnotizability as Related to Visually Induced Affective Reactivity: A Brief Communication. Int. J. Clin. Exp. Hypn. 1991, 39, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Gruzelier, J.H. Redefining hypnosis: Theory, methods and integration. Contemp. Hypn. 2000, 17, 51–70. [Google Scholar] [CrossRef]
- Kirsch, I. Suggestibility or Hypnosis: What do our Scales Really Measure? Int. J. Clin. Exp. Hypn. 1997, 45, 212–225. [Google Scholar] [CrossRef]
- Crawford, H.J. Cognitive and Physiological Flexibility: Multiple Pathways to Hypnotic Responsiveness. In Suggestion and Suggestibility: Theory and Research; Gheorghiu, V.A.N.P., Eysenck, H.J., Rosenthal, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 155–167. [Google Scholar]
- Elkins, G.R.; Barabasz, A.F.; Council, J.R.; Spiegel, D. Advancing Research and Practice: The Revised APA Division 30 Definition of Hypnosis. Int. J. Clin. Exp. Hypn. 2015, 63, 1–9. [Google Scholar] [CrossRef]
- Wagstaff, G.F. Hypnosis and the Relationship between Trance, Suggestion, Expectancy and Depth: Some Semantic and Conceptual Issues. Am. J. Clin. Hypn. 2010, 53, 47–59. [Google Scholar] [CrossRef]
- Lynn, S.J.; Green, J.P. The Sociocognitive and Dissociation Theories of Hypnosis: Toward a Rapprochement. Int. J. Clin. Exp. Hypn. 2011, 59, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Derbyshire, S.W.G.; Whalley, M.G.; Oakley, D.A. Fibromyalgia pain and its modulation by hypnotic and non-hypnotic suggestion: An fMRI analysis. Eur. J. Pain 2009, 13, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Santarcangelo, E.L.; Consoli, S. Complex Role of Hypnotizability in the Cognitive Control of Pain. Front. Psychol. 2018, 9, 2272. [Google Scholar] [CrossRef] [PubMed]
- Varga, K.; Kekecs, Z. Oxytocin and Cortisol in the Hypnotic Interaction1. Int. J. Clin. Exp. Hypn. 2014, 62, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Landry, M.; Lifshitz, M.; Raz, A. Brain correlates of hypnosis: A systematic review and meta-analytic exploration. Neurosci. Biobehav. Rev. 2017, 81, 75–98. [Google Scholar] [CrossRef] [PubMed]
- Picerni, E.; Santarcangelo, E.L.; Laricchiuta, D.; Cutuli, D.; Petrosini, L.; Spalletta, G.; Piras, F. Cerebellar Structural Variations in Subjects with Different Hypnotizability. Cerebellum 2019, 18, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Santarcangelo, E.L.; Scattina, E. Complementing the Latest APA Definition of Hypnosis: Sensory-Motor and Vascular Peculiarities Involved in Hypnotizability. Int. J. Clin. Exp. Hypn. 2016, 64, 318–330. [Google Scholar] [CrossRef]
- Santarcangelo, E.L.; Scattina, E. Responding to Sensorimotor Suggestions: From Endothelial Nitric Oxide to the Functional Equivalence Between Imagery and Perception. Int. J. Clin. Exp. Hypn. 2019, 67, 394–407. [Google Scholar] [CrossRef]
- Ibáñez-Marcelo, E.; Campioni, L.; Manzoni, D.; Santarcangelo, E.L.; Petri, G. Spectral and topological analyses of the cortical representation of the head position: Does hypnotizability matter? Brain Behav. 2019, 9, e01277. [Google Scholar] [CrossRef] [Green Version]
- Spina, V.; Chisari, C.; Santarcangelo, E.L. High Motor Cortex Excitability in Highly Hypnotizable Individuals: A Favourable Factor for Neuroplasticity? Neuroscience 2020, 430, 125–130. [Google Scholar] [CrossRef]
- Diolaiuti, F.; Huber, A.; Ciaramella, A.; Santarcangelo, E.L.; Sebastiani, L. Hypnotizability-related interoceptive awareness and inhibitory/activating emotional traits. Archives Italiennes de Biologie 2019, 157, 111–119. [Google Scholar] [PubMed]
- De Pascalis, V.; Marucci, F.S.; Penna, P.M. 40-Hz EEG asymmetry during recall of emotional events in waking and hypnosis: Differences between low and high hypnotizables. Int. J. Psychophysiol. 1989, 7, 85–96. [Google Scholar] [CrossRef]
- Crawford, H.J.; Clarke, S.W.; Kitner-Triolo, M. Self-generated happy and sad emotions in low and highly hypnotizable persons during waking and hypnosis: Laterality and regional EEG activity differences. Int. J. Psychophysiol. 1996, 24, 239–266. [Google Scholar] [CrossRef]
- Sabourin, M.E.; Cutcomb, S.D.; Crawford, H.J.; Pribram, K. EEG correlates of hypnotic susceptibility and hypnotic trance: Spectral analysis and coherence. Int. J. Psychophysiol. 1990, 10, 125–142. [Google Scholar] [CrossRef]
- Tellegen, A.; Atkinson, G. Openness to absorbing and self-altering experiences (“absorption”), a trait related to hypnotic susceptibility. J. Abnorm. Psychol. 1974, 83, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Crawford, H.J. Hypnotic susceptibility as related to gestalt closure tasks. J. Personal. Soc. Psychol. 1981, 40, 376–383. [Google Scholar] [CrossRef]
- Dasse, M.N.; Elkins, G.R.; Weaver, C.A. Correlates of the Multidimensional Construct of Hypnotizability: Paranormal Belief, Fantasy Proneness, Magical Ideation, and Dissociation. Int. J. Clin. Exp. Hypn. 2015, 63, 274–283. [Google Scholar] [CrossRef]
- Silva, C.; Bridges, K.R.; Metzger, M. Personality, expectancy, and hypnotizability. Pers. Individ. Differ. 2005, 39, 131–142. [Google Scholar] [CrossRef]
- Lynn, S.J.; Rhue, J.W. The fantasy-prone person: Hypnosis, imagination, and creativity. J. Pers. Soc. Psychol. 1986, 51, 404. [Google Scholar] [CrossRef]
- Eccles, J.C. The central action of antidromic impulses in motor nerve fibres. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere 1955, 260, 385–415. [Google Scholar] [CrossRef]
- Coombs, J.S.; Eccles, J.C.; Fatt, P. Excitatory synaptic action in motoneurones. J. Physiol. 1955, 130, 374–395. [Google Scholar] [CrossRef] [PubMed]
- Santarcangelo, E.L.; Busse, K.; Carli, G. Frequency of occurrence of the F wave in distal flexor muscles as a function of hypnotic susceptibility and hypnosis. Cogn. Brain Res. 2003, 16, 99–103. [Google Scholar] [CrossRef]
- Gruzelier, J.H. A working model of the neurophysiology of hypnosis: A review of evidence. Contemp. Hypn. 1998, 15, 3–21. [Google Scholar] [CrossRef]
- Gruzelier, J.H. Frontal functions, connectivity and neural efficiency underpinning hypnosis and hypnotic susceptibility. Contemp. Hypn. 2006, 23, 15–32. [Google Scholar] [CrossRef]
- Gruzelier, J.H.; Brow, T.; Perry, A.; Rhonder, J.; Thomas, M. Hypnotic susceptibility: A lateral predisposition and altered cerebral asymmetry under hypnosis. Int. J. Psychophysiol. 1984, 2, 131–139. [Google Scholar] [CrossRef]
- Thompson-Schill, S.L.; Swick, D.; Farah, M.J.; D’Esposito, M.; Kan, I.P.; Knight, R.T. Verb generation in patients with focal frontal lesions: A neuropsychological test of neuroimaging findings. Proc. Natl. Acad. Sci. USA 1998, 95, 15855. [Google Scholar] [CrossRef] [Green Version]
- Gruzelier, J.H.; Warren, K. Neuropsychological evidence of reductions on left frontal tests with hypnosis. Psychol. Med. 1993, 23, 93–101. [Google Scholar] [CrossRef]
- Kallio, S.; Revonsuo, A.; Hämäläinen, H.; Markela, J.; Gruzelier, J. Anterior brain functions and hypnosis: A test of the frontal hypothesis. Int. J. Clin. Exp. Hypn. 2001, 49, 95–108. [Google Scholar] [CrossRef]
- Naish, P.L.N. Hypnosis and hemispheric asymmetry. Conscious. Cogn. 2010, 19, 230–234. [Google Scholar] [CrossRef]
- Liepmann, H.; Kalmus, E. Ueber eine Augenmassstörung bei Hemianopikern. Berliner Klin Wochenschrift 1900, 38, 838–842. [Google Scholar]
- Diolaiuti, F.; Banfi, T.; Santarcangelo, E.L. Hypnotizability and the Peripersonal Space. Int. J. Clin. Exp. Hypn. 2017, 65, 466–478. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, M.; Shulman, G.L.; Miezin, F.M.; Petersen, S.E. Superior Parietal Cortex Activation During Spatial Attention Shifts and Visual Feature Conjunction. Science 1995, 270, 802. [Google Scholar] [CrossRef] [PubMed]
- Longo, M.R.; Lourenco, S.F. Bisecting the mental number line in near and far space. Brain Cogn. 2010, 72, 362–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.-W.; Lee, C.-L.; Federmeier, K.D. Imagine that! ERPs provide evidence for distinct hemispheric contributions to the processing of concrete and abstract concepts. NeuroImage 2010, 49, 1116–1123. [Google Scholar] [CrossRef] [Green Version]
- Sackeim, H.A.; Greenberg, M.S.; Weiman, A.L.; Gur, R.C.; Hungerbuhler, J.P.; Geschwind, N. Hemispheric Asymmetry in the Expression of Positive and Negative Emotions: Neurologic Evidence. Arch. Neurol. 1982, 39, 210–218. [Google Scholar] [CrossRef]
- Nadon, R.; Laurence, J.-R.; Perry, C.W. The two disciplines of scientific hypnosis: A synergistic model. In Hypnosis and Imagination; Kunzendorf, R.G., Spanos, N.P., Wallace, B., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 1991; pp. 78–91. [Google Scholar]
- Santarcangelo, E.L.; Cavallaro, E.; Mazzoleni, S.; Marano, E.; Ghelarducci, B.; Dario, P.; Micera, S.; Sebastiani, L. Kinematic strategies for lowering of upper limbs during suggestions of heaviness: A real-simulator design. Exp. Brain Res. 2005, 162, 35–45. [Google Scholar] [CrossRef]
- Woody, E.Z.; Bowers, K.S.; Lynn, S.; Rhue, J. A Frontal Assault on Dissociated Control. In Hypnosis: Theory, Research and Application; HMaK, I., Ed.; Guilford Press: New York, NY, USA, 1994. [Google Scholar]
- Woody, E.Z.; McConkey, K.M. What we don’t know about the Brain and Hypnosis, but need to: A View from the Buckhorn Inn. Int. J. Clin. Exp. Hypn. 2003, 51, 309–338. [Google Scholar] [CrossRef]
- Woody, E.Z.; Szechtman, H. How Can Brain Activity and Hypnosis Inform Each Other? Int. J. Clin. Exp. Hypn. 2003, 51, 232–255. [Google Scholar] [CrossRef]
- Egner, T.; Jamieson, G.; Gruzelier, J. Hypnosis decouples cognitive control from conflict monitoring processes of the frontal lobe. NeuroImage 2005, 27, 969–978. [Google Scholar] [CrossRef]
- Kihlstrom, J.F.; Glisky, M.L.; McGovern, S.; Rapcsak, S.Z.; Mennemeier, M.S. Hypnosis in the right hemisphere. Cortex 2013, 49, 393–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dienes, Z.; Hutton, S. Understanding hypnosis metacognitively: rTMS applied to left DLPFC increases hypnotic suggestibility. Cortex 2013, 49, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Barnier, A.J.; Dienes, Z.; Mitchell, C.J. How Hypnosis Happens: New Cognitive Theories of Hypnotic Responding. In The Oxford Handbook of Hypnosis: Theory, Research, and Practice; Oxford University Press: New York, NY, USA, 2008; pp. 141–177. [Google Scholar]
- Dienes, Z.; Beran, M.; Brandl, J.L.; Perner, J.; Proust, J. Is hypnotic responding the strategic relinquishment of metacognition. In Foundations of Metacognition; Beran, M.J., Brandl, J.L., Perner, J., Proust, J., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 267–278. [Google Scholar]
- Woody, E.Z.; Sadler, P. Dissociation Theories of Hypnosis. In The Oxford Handbook of Hypnosis: Theory, Research, and Practice; NMaB, A., Ed.; Oxford University Press Inc.: New York, NY, USA, 2008; pp. 81–110. [Google Scholar]
- Barabasz, A.F.; Barabasz, M. Hypnosis and the Brain. In The Oxford Handbook of Hypnosis: Theory, Research, and Practice; NMaB, A.J., Ed.; Oxford University Press: Oxford, UK, 2008; pp. 337–364. [Google Scholar]
- Kihlstrom, J.F. Neuro-hypnotism: Prospects for hypnosis and neuroscience. Cortex 2013, 49, 365–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Pascalis, V. Psychophysiological correlates of hypnosis and hypnotic susceptibility. Int. J. Clin. Exp. Hypn. 1999, 47, 117–143. [Google Scholar] [CrossRef] [PubMed]
- Bakan, P. Hypnotizability, Laterality of Eye-Movements and Functional Brain Asymmetry. Percept. Motor Skills 1969, 28, 927–932. [Google Scholar] [CrossRef]
- Jasiukaitis, P.; Nouriani, B.; Hugdahl, K.; Spiegel, D. Relateralizing Hypnosis: Or, have we been Barking Up the Wrong Hemisphere? Int. J. Clin. Exp. Hypn. 1997, 45, 158–177. [Google Scholar] [CrossRef] [PubMed]
- Corballis, M.C. The Lopsided Ape: Evolution of the Generative Mind; Oxford University Press: Cary, NC, USA, 1993. [Google Scholar]
- Crawford, H.J.; Gruzelier, J.H. A Midstream View of the Neuropsychophysiology of Hypnosis: Recent Research and Future Directions. In Contemporary Hypnosis Research; Guilford Press: New York, NY, USA, 1992; pp. 227–266. [Google Scholar]
- Morgan, A.H.; McDonald, P.J.; MacDonald, H. Differences in bilateral alpha activity as a function of experimental task, with a note on lateral eye movements and hypnotizability. Neuropsychologia 1971, 9, 459–469. [Google Scholar] [CrossRef]
- Galin, D.; Ornstein, R. Lateral Specialization of Cognitive Mode: An EEG Study. Psychophysiology 1972, 9, 412–418. [Google Scholar] [CrossRef]
- Doyle, J.C.; Ornstein, R.; Galin, D. Lateral Specialization of Cognitive Mode: II. EEG Frequency Analysis. Psychophysiology 1974, 11, 567–578. [Google Scholar] [CrossRef]
- Amochaev, A.; Salamy, A. Stability of EEG Laterality Effects. Psychophysiology 1979, 16, 242–246. [Google Scholar] [CrossRef]
- Morgan, A.H.; Macdonald, H.; Hilgard, E.R. EEG Alpha: Lateral Asymmetry Related to Task, and Hypnotizability. Psychophysiology 1974, 11, 275–282. [Google Scholar] [CrossRef]
- MacLeod-Morgan, C. Hypnotic Susceptibility, EEG Theta and Alpha Waves, and Hemispheric Specificity. In Hypnosis 1979; Burrows, D.R.C., Dennerstein, L., Eds.; Elsevier: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Macleod-Morgan, C.; Lack, L. Hemispheric Specificity: A Physiological Concomitant of Hypnotizability. Psychophysiology 1982, 19, 687–690. [Google Scholar] [CrossRef] [PubMed]
- Perlini, A.H.; Spanos, N.P. EEG Alpha Methodologies and Hypnotizability: A Critical Review. Psychophysiology 1991, 28, 511–530. [Google Scholar] [CrossRef] [PubMed]
- De Pascalis, V.; Palumbo, G. EEG Alpha Asymmetry: Task Difficulty and Hypnotizability. Percept. Motor Skills 1986, 62, 139–150. [Google Scholar] [CrossRef] [PubMed]
- De Pascalis, V.; Silveri, A.; Palumbo, G. EEG Asymmetry During Covert Mental Activity and its Relationship with Hypnotizability. Int. J. Clin. Exp. Hypn. 1988, 36, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Coppola, R.; Chassy, J. Subjects with low versus high frequency alpha rhythm reveal different topographic structure. Electroencephalogr. Clin. Neurophysiol. 1986, 63, 41. [Google Scholar]
- Coppola, R. Issues in Topographic Analysis of EEG Activity. In Topographic Mapping of Brain Electrical Activity; Duffy, F.H., Boston, M.A., Eds.; Butterworth: Oxford, UK, 1986; pp. 339–346. [Google Scholar]
- Bösel, R. Slow alpha in the EEG power spectrum as an indicator for conceptual arousal. Zeitschrift fur Exp. und Angew. Psychol. Berl. 1992, 39, 372–395. [Google Scholar]
- Pfurtscheller, G.; Klimesch, W. Event-related desynchronization during motor behavior and visual information processing. Electroencephalogr. Clin. Neurophysiol. Suppl. 1991, 42, 58–65. [Google Scholar]
- Sterman, M.B.; Mann, C.A.; Kaiser, D.A.; Suyenobu, B.Y. Multiband topographic EEG analysis of a simulated visuomotor aviation task. Int. J. Psychophysiol. 1994, 16, 49–56. [Google Scholar] [CrossRef]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Jensen, M.P.; Adachi, T.; Hakimian, S. Brain Oscillations, Hypnosis, and Hypnotizability. Am. J. Clin. Hypn. 2015, 57, 230–253. [Google Scholar] [CrossRef]
- Crawford, H.J. Cognitive and Psychophysiological Correlates of Hypnotic Responsiveness and Hypnosis. In Creative Mastery in Hypnosis and Hypnoanalysis: A Festschrift for Erika Fromm; FMLaBD, P., Ed.; Plenum Press: New York, NY, USA, 1990; pp. 47–54. [Google Scholar]
- Freeman, R.; Barabasz, A.; Barabasz, M.; Warner, D. Hypnosis and Distraction Differ in Their Effects on Cold Pressor Pain. Am. J. Clin. Hypn. 2000, 43, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Galbraith, G.C.; London, P.; Leibovitz, M.P.; Cooper, L.M.; Hart, J.T. EEG and hypnotic susceptibility. J. Comp. Physiol. Psychol. 1970, 72, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Kirenskaya, A.V.; Novototsky-Vlasov, V.Y.; Zvonikov, V.M. Waking EEG Spectral Power and Coherence Differences Between High and Low Hypnotizable Subjects. Int. J. Clin. Exp. Hypn. 2011, 59, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.D.; Dwyer, K.V.; Kelly, S.M. Relationship between QEEG Relative Power and Hypnotic Susceptibility. Am. J. Clin. Hypn. 2000, 43, 71–75. [Google Scholar] [CrossRef]
- Tebecis, A.K.; Provins, K.A.; Farnbach, R.W.; Pentony, P. Hypnosis and the EEG: A quantitative investigation. J. Nerv. Mental Dis. 1975, 161, 1–17. [Google Scholar] [CrossRef] [PubMed]
- De Pascalis, V.; Imperiali, M.G. Personality, Hypnotic Susceptibility and EEG Responses: Preliminary Study. Percept. Motor Skills 1984, 59, 371–378. [Google Scholar] [CrossRef]
- De Pascalis, V.; Perrone, M. EEG asymmetry and heart rate during experience of hypnotic analgesia in high and low hypnotizables. Int. J. Psychophysiol. 1996, 21, 163–175. [Google Scholar] [CrossRef]
- Barabasz, A.F. Effects of sensory deprivation on EEG theta and skin conductance. Int. J. Psychophysiol. 1991, 11, 9. [Google Scholar] [CrossRef]
- Lipari, S.; Baglio, F.; Griffanti, L.; Mendozzi, L.; Garegnani, M.; Motta, A.; Cecconi, P.; Pugnetti, L. Altered and asymmetric default mode network activity in a “hypnotic virtuoso”: An fMRI and EEG study. Conscious. Cogn. 2012, 21, 393–400. [Google Scholar] [CrossRef]
- Başar-Eroglu, C.; Başar, E.; Demiralp, T.; Schürmann, M. P300-response: Possible psychophysiological correlates in delta and theta frequency channels. A review. Int. J. Psychophysiol. 1992, 13, 161–179. [Google Scholar] [CrossRef]
- Bruneau, N.; Roux, S.; Guérin, P.; Garreau, B.; Lelord, G. Auditory stimulus intensity responses and frontal midline theta rhythm. Electroencephalogr. Clin. Neurophysiol. 1993, 86, 213–216. [Google Scholar] [CrossRef]
- Klimesch, W.; Schack, B.; Sauseng, P. The functional significance of theta and upper alpha oscillations. Exp. Psychol. 2005, 52, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Schacter, D.L. EEG theta waves and psychological phenomena: A review and analysis. Biol. Psychol. 1977, 5, 47–82. [Google Scholar] [CrossRef]
- Graffin, N.F.; Ray, W.J.; Lundy, R. EEG concomitants of hypnosis and hypnotic susceptibility. J. Abnorm. Psychol. 1995, 104, 123–131. [Google Scholar] [CrossRef]
- Ray, W.J. EEG Concomitants of Hypnotic Susceptibility. Int. J. Clin. Exp. Hypn. 1997, 45, 301–313. [Google Scholar] [CrossRef]
- Williams, J.D.; Gruzelier, J.H. Differentiation of hypnosis and relaxation by analysis of narrow band theta and alpha frequencies. Int. J. Clin. Exp. Hypn. 2001, 49, 185–206. [Google Scholar] [CrossRef]
- Jamieson, G.A.; Burgess, A.P. Hypnotic induction is followed by state-like changes in the organization of EEG functional connectivity in the theta and beta frequency bands in high-hypnotically susceptible individuals. Front. Human Neurosci. 2014, 8, 528. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.P.; Adachi, T.; Tomé-Pires, C.; Lee, J.; Osman, Z.J.; Miró, J. Mechanisms of Hypnosis: Toward the Development of a Biopsychosocial Model. Int. J. Clin. Exp. Hypn. 2015, 63, 34–75. [Google Scholar] [CrossRef] [Green Version]
- Isotani, T.; Lehmann, D.; Pascual-Marqui, R.D.; Kochi, K.; Wackermann, J.; Saito, N.; Yagyu, T.; Kinoshita, T.; Sasada, K. EEG Source Localization and Global Dimensional Complexity in High- and Low- Hypnotizable Subjects: A Pilot Study. Neuropsychobiology 2001, 44, 192–198. [Google Scholar] [CrossRef]
- Akpinar, S.; Ulett, G.A.; Itil, T.M. Hypnotizability predicted by digital computer-analyzed EEG pattern. Biol. Psychiatry 1971, 3, 387–392. [Google Scholar]
- Ulett, G.A.; Akpinar, S.; Itil, T.M. Hypnosis: Physiological, Pharmacological Reality. Am. J. Psychiatry 1972, 128, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Ulett, G.A.; Akpinar, S.; Itil, T.M. Quantitative EEG analysis during hypnosis. Electroencephalogr. Clin. Neurophysiol. 1972, 33, 361–368. [Google Scholar] [CrossRef]
- Fingelkurts, A.A.; Fingelkurts, A.A.; Kallio, S.; Revonsuo, A. Hypnosis induces a changed composition of brain oscillations in EEG: A case study. Contemp. Hypn. 2007, 24, 3–18. [Google Scholar] [CrossRef]
- Varela, F.; Lachaux, J.-P.; Rodriguez, E.; Martinerie, J. The brainweb: Phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2001, 2, 229–239. [Google Scholar] [CrossRef] [PubMed]
- White, D.; Ciorciari, J.; Carbis, C.; Liley, D. EEG Correlates of Virtual Reality Hypnosis. Int. J. Clin. Exp. Hypn. 2009, 57, 94–116. [Google Scholar] [CrossRef] [PubMed]
- Başar, E.; Schürmann, M.; Başar-Eroglu, C.; Demiralp, T. Selectively distributed gamma band system of the brain. Int. J. Psychophysiol. 2001, 39, 129–135. [Google Scholar] [CrossRef]
- Galambos, R.; Makeig, S.; Talmachoff, P.J. A 40-Hz auditory potential recorded from the human scalp. Proc. Natl. Acad. Sci. USA 1981, 78, 2643. [Google Scholar] [CrossRef] [Green Version]
- Sheer, D.E. Biofeedback Training of 40-Hz EEG and Behavior. In Behavior and Brain Electrical Activity; Burch, N., Boston, M.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1975. [Google Scholar]
- Ford, M.; Bird, B.L.; Newton, F.A.; Sheer, D. Maintenance and generalization of 40-Hz EEG biofeedback effects. Biofeedback Self-Regul. 1980, 5, 193–205. [Google Scholar] [CrossRef]
- De Pascalis, V.; Ray, W.J. Effects of memory load on event-related patterns of 40-Hz EEG during cognitive and motor tasks. Int. J. Psychophysiol. 1998, 28, 301–315. [Google Scholar] [CrossRef]
- Oken, B.S.; Salinsky, M.C.; Elsas, S.M. Vigilance, alertness, or sustained attention: Physiological basis and measurement. Clin. Neurophysiol. 2006, 117, 1885–1901. [Google Scholar] [CrossRef] [Green Version]
- Sheer, D.E. Focused Arousal, 40-Hz, E.E.G.; and Dysfunction. In Self-Regulation of the Brain and Behavior; Elbert, T., Lutzenberger, W., Birbaumer, N., Eds.; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Sheer, D.E. Sensory and Cognitive 40-Hz Event-Related Potentials: Behavioral Correlates, Brain Function, and Clinical Application. In Brain Dynamics; Başar, E., Ed.; Springer: Berlin/Heidelberg, Germany, 1989; Volume 2. [Google Scholar]
- Tallon-Baudry, C.; Bertrand, O.; Hénaff, M.-A.; Isnard, J.; Fischer, C. Attention Modulates Gamma-band Oscillations Differently in the Human Lateral Occipital Cortex and Fusiform Gyrus. Cereb. Cortex 2004, 15, 654–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermes, D.; Miller, K.J.; Wandell, B.A.; Winawer, J. Stimulus Dependence of Gamma Oscillations in Human Visual Cortex. Cereb. Cortex 2014, 25, 2951–2959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crone, N.E.; Korzeniewska, A.; Franaszczuk, P.J. Cortical gamma responses: Searching high and low. Int. J. Psychophysiol. 2011, 79, 9–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojemann, G.; Ramsey, N.; Ojemann, J. Relation between functional magnetic resonance imaging (fMRI) and single neuron, local field potential (LFP) and electrocorticography (ECoG) activity in human cortex. Front. Human Neurosci. 2013, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- De Pascalis, V.; Marucci, F.S.; Penna, P.M.; Pessa, E. Hemispheric activity of 40 Hz EEG during recall of emotional events: Differences between low and high hypnotizables. Int. J. Psychophysiol. 1987, 5, 167–180. [Google Scholar] [CrossRef]
- De Pascalis, V.; Penna, P.M. 40-Hz Eeg Activity During Hypnotic Induction and Hypnotic Testing. Int. J. Clin. Exp. Hypn. 1990, 38, 125–138. [Google Scholar] [CrossRef]
- De Pascalis, V. EEG spectral analysis during hypnotic induction, hypnotic dream and age regression. Int. J. Psychophysiol. 1993, 15, 153–166. [Google Scholar] [CrossRef]
- Terhune, D.B.; Cardeña, E.; Lindgren, M. Differential frontal-parietal phase synchrony during hypnosis as a function of hypnotic suggestibility. Psychophysiology 2011, 48, 1444–1447. [Google Scholar] [CrossRef]
- Cardeña, E.; Jönsson, P.; Terhune, D.B.; Marcusson-Clavertz, D. The neurophenomenology of neutral hypnosis. Cortex 2013, 49, 375–385. [Google Scholar] [CrossRef]
- Cardeña, E.; Lehmann, D.; Faber, P.L.; Jönsson, P.; Milz, P.; Pascual-Marqui, R.D.; Kochi, K. EEG sLORETA Functional Imaging During Hypnotic Arm Levitation and Voluntary Arm Lifting. Int. J. Clin. Exp. Hypn. 2012, 60, 31–53. [Google Scholar] [CrossRef]
- McGeown, W.J.; Mazzoni, G.; Venneri, A.; Kirsch, I. Hypnotic induction decreases anterior default mode activity. Conscious. Cogn. 2009, 18, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Lisman John, E.; Jensen, O. The Theta-Gamma Neural Code. Neuron 2013, 77, 1002–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buzsáki, G. Rhythms of The Brain; Oxford University Press Inc.: NewYork, NY, USA, 2006. [Google Scholar]
- Buzsaki, G. The Brain from Inside Out; Oxford University Press: NewYork, NY, USA, 2019. [Google Scholar]
- Maris, E.; van Vugt, M.; Kahana, M. Spatially distributed patterns of oscillatory coupling between high-frequency amplitudes and low-frequency phases in human iEEG. NeuroImage 2011, 54, 836–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbert, T.; Ray, W.J.; Kowalik, Z.J.; Skinner, J.E.; Graf, K.E.; Birbaumer, N. Chaos and physiology: Deterministic chaos in excitable cell assemblies. Physiol. Rev. 1994, 74, 1–47. [Google Scholar] [CrossRef]
- Lutzenberger, W.; Elbert, T.; Birbaumer, N.; Ray, W.J.; Schupp, H. The scalp distribution of the fractal dimension of the EEG and its variation with mental tasks. Brain Topogr. 1992, 5, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, G.; Nasrabadi, A.M. Comparison of different EEG features in estimation of hypnosis susceptibility level. Comput. Biol. Med. 2012, 42, 590–597. [Google Scholar] [CrossRef]
- Yargholi, E.; Nasrabadi, A.M. Chaos–chaos transition of left hemisphere EEGs during standard tasks of Waterloo-Stanford Group Scale of hypnotic susceptibility. J. Med. Eng. Technol. 2015, 39, 281–285. [Google Scholar] [CrossRef]
- Crawford, H.J.; Gur, R.C.; Skolnick, B.; Gur, R.E.; Benson, D.M. Effects of hypnosis on regional cerebral blood flow during ischemic pain with and without suggested hypnotic analgesia. Int. J. Psychophysiol. 1993, 15, 181–195. [Google Scholar] [CrossRef]
- Maquet, P.; Faymonville, M.E.; Degueldre, C.; Delfiore, G.; Franck, G.; Luxen, A.; Lamy, M. Functional neuroanatomy of hypnotic state. Biol. Psychiatry 1999, 45, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Rainville, P.; Hofbauer, R.K.; Paus, T.; Duncan, G.H.; Bushnell, M.C.; Price, D.D. Cerebral mechanisms of hypnotic induction and suggestion. J. Cogn. Neurosci. 1999, 11, 110–125. [Google Scholar] [CrossRef]
- Szechtman, H.; Woody, E.; Bowers, K.S.; Nahmias, C. Where the imaginal appears real: A positron emission tomography study of auditory hallucinations. Proc. Natl. Acad. Sci. USA 1998, 95, 1956–1960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGeown, W.J.; Mazzoni, G.; Vannucci, M.; Venneri, A. Structural and functional correlates of hypnotic depth and suggestibility. Psychiatry Res. Neuroimaging 2015, 231, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber, A.; Lui, F.; Duzzi, D.; Pagnoni, G.; Porro, C.A. Structural and functional cerebral correlates of hypnotic suggestibility. PLoS ONE 2014, 9, e93187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horton, J.E.; Crawford, H.J.; Harrington, G.; Downs, J.H., 3rd. Increased anterior corpus callosum size associated positively with hypnotizability and the ability to control pain. Brain 2004, 127, 1741–1747. [Google Scholar] [CrossRef] [PubMed]
- Demertzi, A.; Soddu, A.; Faymonville, M.E.; Bahri, M.A.; Gosseries, O.; Vanhaudenhuyse, A.; Phillips, C.; Maquet, P.; Noirhomme, Q.; Luxen, A.; et al. Chapter 20—Hypnotic Modulation of Resting State Fmri Default Mode and Extrinsic Network Connectivity. In Progress in Brain Research; Van Someren, E.J.W., Van Der Werf, Y.D., Roelfsema, P.R., Mansvelder, H.D., Lopes Da Silva, F.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 193, pp. 309–322. [Google Scholar]
- McGeown, W.J.; Venneri, A.; Kirsch, I.; Nocetti, L.; Roberts, K.; Foan, L.; Mazzoni, G. Suggested visual hallucination without hypnosis enhances activity in visual areas of the brain. Conscious. Cogn. 2012, 21, 100–116. [Google Scholar] [CrossRef]
- Hoeft, F.; Gabrieli, J.D.E.; Whitfield-Gabrieli, S.; Haas, B.W.; Bammer, R.; Menon, V.; Spiegel, D. Functional Brain Basis of Hypnotizability. Arch. Gene. Psychiatry 2012, 69, 1064–1072. [Google Scholar] [CrossRef] [Green Version]
- Cojan, Y.; Piguet, C.; Vuilleumier, P. What makes your brain suggestible? Hypnotizability is associated with differential brain activity during attention outside hypnosis. NeuroImage 2015, 117, 367–374. [Google Scholar] [CrossRef]
- Hilgard, E.R. Divided Consciousness: Multiple Controls in Human Thought and Action; Wiley New York: Hoboken, NJ, USA, 1977. [Google Scholar]
- Jiang, H.; White, M.P.; Greicius, M.D.; Waelde, L.C.; Spiegel, D. Brain Activity and Functional Connectivity Associated with Hypnosis. Cereb. Cortex 2017, 27, 4083–4093. [Google Scholar] [CrossRef] [Green Version]
- Greicius, M.D.; Menon, V. Default-Mode Activity during a Passive Sensory Task: Uncoupled from Deactivation but Impacting Activation. J. Cogn. Neurosci. 2004, 16, 1484–1492. [Google Scholar] [CrossRef] [Green Version]
- Seeley, W.W.; Menon, V.; Schatzberg, A.F.; Keller, J.; Glover, G.H.; Kenna, H.; Reiss, A.L.; Greicius, M.D. Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control. J. Neurosci. 2007, 27, 2349. [Google Scholar] [CrossRef]
- Leech, R.; Kamourieh, S.; Beckmann, C.F.; Sharp, D.J. Fractionating the Default Mode Network: Distinct Contributions of the Ventral and Dorsal Posterior Cingulate Cortex to Cognitive Control. J. Neurosci. 2011, 31, 3217. [Google Scholar] [CrossRef] [PubMed]
- Ray, W.J.; Bjick, E. Psychophysiological measures of hypnosis and hypnotic susceptibility: Implications from 40 Hz activity. Int. J. Psychophysiol. 1997, 1, 61. [Google Scholar] [CrossRef]
- Jensen, M.P.; Jamieson, G.A.; Lutz, A.; Mazzoni, G.; McGeown, W.J.; Santarcangelo, E.L.; Demertzi, A.; De Pascalis, V.; Bányai, É.I.; Rominger, C.; et al. New directions in hypnosis research: Strategies for advancing the cognitive and clinical neuroscience of hypnosis. Neurosci. Conscious. 2017, 3. [Google Scholar] [CrossRef] [PubMed]
Highs with Respect to Lows | ||
---|---|---|
spinal reflexes | H reflex habituation during long lasting relaxation | Santarcangelo et al., 1989 |
F wave reduced frequency of occurrence (right hand) | Santarcangelo et al., 2003 | |
postural and locomotor control | less accurate during sensory alteration | Santarcangelo et al., 2008; |
Menzocchi et al., 2010a | ||
Menzocchi et al., 2010b; | ||
Solari et al., 2015 | ||
visuomotor control | less accurate | Menzocchi et al., 2015 |
haptics | better performance in the visual recognition of | |
bimanually explored nonmeaninful objects | Castellani et al., 2011 | |
better performance in the blindfolded reproduction | ||
of haptically explored angles | Menzocchi et al., 2012 | |
autonomic control | preeminent parasympathetic control during | |
long-lasting relaxation | ||
sympathetic control in standing position less engaged | Santarcangelo et al., 2012 | |
not reduced by stress and nociceptive stimulation | Santarcangelo et al., 2007 | |
flow-mediated artery dilation | not reduced by stress and nociceptive stimulation | Jambrik et al., 2004a |
Jambrik et al., 2004b; | ||
Jambrik et al., 2005a | ||
Jambrik et al., 2005b | ||
functional equivalence between | ||
imagery and perception | stronger | Papalia et al., 2014; |
Santarcangelo, 2014; | ||
Ibanez-Marcelo et al., 2019 | ||
cerebellar control of pain | paradoxical after anodal cerebellar stimulation | Bocci et al., 2017 |
motor cortex excitability | higher in basal and imagery conditions | Spina et al., 2020 |
μ1 polymorphism | higher frequency of the polimorphism less responsive | |
to opiates | Presciuttini et al., 2018 | |
emotional reactivity | greater | Facco et al., 2016 |
Kirenskaia et al., 2011 | ||
De Pascalis et al., 1989 | ||
interoceptive sensitivity | greater | Diolaiuti et al. 2019 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Pascalis, V.; Santarcangelo, E.L. Hypnotizability-Related Asymmetries: A Review. Symmetry 2020, 12, 1015. https://doi.org/10.3390/sym12061015
De Pascalis V, Santarcangelo EL. Hypnotizability-Related Asymmetries: A Review. Symmetry. 2020; 12(6):1015. https://doi.org/10.3390/sym12061015
Chicago/Turabian StyleDe Pascalis, Vilfredo, and Enrica Laura Santarcangelo. 2020. "Hypnotizability-Related Asymmetries: A Review" Symmetry 12, no. 6: 1015. https://doi.org/10.3390/sym12061015
APA StyleDe Pascalis, V., & Santarcangelo, E. L. (2020). Hypnotizability-Related Asymmetries: A Review. Symmetry, 12(6), 1015. https://doi.org/10.3390/sym12061015