Generalized Dual-Root Lattice Transforms of Affine Weyl Groups
Abstract
:1. Introduction
2. Shift Homomorphisms of Extended Weyl Groups
2.1. Congruence Decomposition of Weight Lattices
2.2. Admissible Shifts of Dual Root and Weight Lattices
- 1.
- is an admissible shift of ,
- 2.
- ,
- 3.
- for all it holds that
- 4.
- .
2.3. Dual Affine Weyl Groups and Dual Shift Homomorphism
2.4. Extended Dual Affine Weyl Group and Shift Homomorphism
3. Weyl Orbit Functions on Shifted Dual Root Lattices
3.1. Sign and -Homomorphisms
3.2. Generalized Coxeter Numbers and Signed Fundamental Domains
3.3. Symmetry Properties
3.4. Shifted Dual-Root Lattice Discretization
4. Cardinality of and
4.1. -Invariant Polynomials
- (i)
- for all , i.e., and are equivalent,
- (ii)
- ⇔.
4.2. Cardinality of
4.3. Cardinality of
4.4. Counting Formulas
- 1.
- :
- 2.
- , :
- 3.
- :where .
- 4.
- :
- 5.
- :
- 6.
- :
- 7.
- :where
5. Generalized Dual-Root Lattice Fourier-Weyl Transforms
5.1. Discrete Orthogonality on Shifted Dual Root Lattice
5.2. Shifted Dual-Root Lattice Discrete Transforms
5.3. Unitary Transform Matrices of
6. Concluding Remarks
- The algorithmic construction of the point and label sets of the shifted dual-root lattice transforms is attainable by various methods, as demonstrated in Section 5.3 for the case. For instance, the steps for formation of the point sets (104) start with direct determination of the ranges of the positive integer symbols , in (90). Each solution of the equation
- The counting formulas in Theorem 3 and Theorem 5.5 of [1] for the identity sign homomorphism sets of points and sets of labels , of provide a novel interpretation of the functions in [34]. Combinatorial proof of the generalized Hermite reciprocity in [34] employs analogs of both point and label sets as well as stabilizer counting functions of . Stemming from the presented discrete Fourier-Weyl transforms, potential further generalizations of the Hermite reciprocity, together with its combinatorial and algebraic implications to all crystallographic root systems, represents an open problem. Moreover, mathematical and physical consequences of the generalized Hermite reciprocity for the conceivably interconnected discrete transforms of and deserve further study.
- The collection of the developed shifted dual-root lattice discrete Fourier-Weyl transforms provides advantageous novel options for applications in digital data processing and Fourier and Chebyshev methods. Because the dual-weight lattice transforms [17] and related (anti)symmetric trigonometric transforms [13,14] exhibit very good interpolation properties, a similar feasibility of the currently developed discrete transforms is indicated. The interpolation properties of novel variants of discrete transforms on the honeycomb triangular dot with armchair boundaries [23] merit further testing. Numerical integration and approximation methods that are associated with the induced generalized Chebyshev polynomials [6,10,20,35] deserve further study. The modification of the discrete orthogonality relations of Macdonald polynomials [36] that would specialize to the current induced discrete polynomial orthogonality relations poses an open problem.
- The even complex-valued Fourier-Weyl transforms, as well as the even real-valued Hartley-Weyl transforms [37] of the six types of E-functions for root systems with two root lengths, are developed in [38]. The kernels of the sign homomorphism form the (anti)symmetrizing normal subgroups of Weyl groups inherent in E-functions. The generalization of the present shifted dual-root lattice discrete transforms to all types of E-functions deserves further study. Real-valued Hartley-Weyl transforms on the dual root lattice are developed in [1]. However, shifting the dual root lattice produces complex factors in label symmetries of Weyl orbit functions (85) that prevent apparent extension of the dual-root Hartley-Weyl transform to their shifted versions. A suitable modification of the point and label sets, including a possible adjustment of the multivariate Hartley kernel function [1,38], which would lead to viable real-valued shifted dual-root lattice transforms, represents an unsolved problem.
Author Contributions
Funding
Conflicts of Interest
References
- Hrivnák, J.; Motlochová, L. Dual-root lattice discretization of Weyl orbit functions. J. Fourier Anal. Appl. 2019, 25, 2521–2569. [Google Scholar] [CrossRef] [Green Version]
- Hrivnák, J.; Motlochová, L.; Patera, J. On discretization of tori of compact simple Lie groups II. J. Phys. A 2012, 45, 255201. [Google Scholar] [CrossRef]
- Hrivnák, J.; Patera, J. On discretization of tori of compact simple Lie groups. J. Phys. A Math. Theor. 2009, 42, 385208. [Google Scholar] [CrossRef] [Green Version]
- Hrivnák, J.; Walton, M.A. Weight-Lattice Discretization of Weyl-Orbit Functions. J. Math. Phys. 2016, 57, 083512. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Sun, J.; Xu, Y. Discrete Fourier analysis, cubature and interpolation on a hexagon and a triangle. SIAM J. Numer. Anal. 2008, 46, 1653–1681. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xu, Y. Discrete Fourier analysis on fundamental domain and simplex of Ad lattice in d-variables. J. Fourier Anal. Appl. 2010, 16, 383–433. [Google Scholar] [CrossRef]
- Klimyk, A.U.; Patera, J. Orbit functions. SIGMA 2006, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Klimyk, A.U.; Patera, J. Antisymmetric orbit functions. SIGMA 2007, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Czyżycki, T.; Hrivnák, J. Generalized discrete orbit function transforms of affine Weyl groups. J. Math. Phys. 2014, 55, 113508. [Google Scholar] [CrossRef] [Green Version]
- Moody, R.V.; Motlochová, L.; Patera, J. Gaussian cubature arising from hybrid characters of simple Lie groups. J. Fourier Anal. Appl. 2014, 20, 1257–1290. [Google Scholar] [CrossRef] [Green Version]
- Hrivnák, J.; Motlochová, L. On connecting Weyl-orbit functions to Jacobi polynomials and multivariate (anti)symmetric trigonometric functions. Acta Polytech. 2016, 56, 283–290. [Google Scholar] [CrossRef]
- Klimyk, A.; Patera, J. (Anti)symmetric multivariate trigonometric functions and corresponding Fourier transforms. J. Math. Phys. 2007, 48, 093504. [Google Scholar] [CrossRef] [Green Version]
- Hrivnák, J.; Motlochová, L. Discrete transforms and orthogonal polynomials of (anti)symmetric multivariate cosine functions. SIAM J. Numer. Anal. 2010, 51, 073509. [Google Scholar] [CrossRef] [Green Version]
- Brus, A.; Hrivnák, J.; Motlochová, L. Discrete Transforms and Orthogonal Polynomials of (Anti)symmetric Multivariate Sine Functions. Entropy 2018, 20, 938. [Google Scholar] [CrossRef] [Green Version]
- Britanak, V.; Rao, K.; Yip, P. Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximation; Elsevier/Academic Press: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Lemire, F.; Patera, J. Congruence number, a generalization of SU(3) triality. J. Math. Phys. 1980, 21, 2026–2027. [Google Scholar] [CrossRef]
- Háková, L.; Hrivnák, J.; Patera, J. Four families of Weyl group orbit functions of B3 and C3. J. Math. Phys. 2013, 54, 083501. [Google Scholar] [CrossRef] [Green Version]
- Berens, H.; Schmid, H.J.; Xu, Y. Multivariate Gaussian cubature formulae. Arch. Math. 1995, 64, 26–32. [Google Scholar] [CrossRef]
- Cools, R. An encyclopaedia of cubature formulas. J. Complex. 2003, 19, 445–453. [Google Scholar] [CrossRef]
- Moody, R.V.; Patera, J. Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups. Adv. Appl. Math. 2011, 47, 509–535. [Google Scholar] [CrossRef] [Green Version]
- Munthe-Kaas, H.Z. On group Fourier analysis and symmetry preserving discretizations of PDEs. J. Phys. A Math. Gen. 2006, 39, 5563–5584. [Google Scholar] [CrossRef]
- Moody, R.V.; Patera, J. Orthogonality within the families of C-, S-, and E-functions of any compact semisimple Lie group. SIGMA 2006, 2, 76. [Google Scholar] [CrossRef] [Green Version]
- Hrivnák, J.; Motlochová, L. Discrete cosine and sine transforms generalized to honeycomb lattice. J. Math. Phys. 2018, 59, 063503. [Google Scholar] [CrossRef] [Green Version]
- Drissi, L.B.; Saidi, E.H.; Bousmina, M. Graphene, Lattice Field Theory and Symmetries. J. Math. Phys. 2011, 52, 022306. [Google Scholar] [CrossRef]
- Güçlü, A.D.; Potasz, P.; Korkusinski, M.; Hawrylak, P. Graphene Quantum Dots; Springer: Berlin, Germany, 2014. [Google Scholar]
- Rozhkov, A.V.; Nori, F. Exact wave functions for an electron on a graphene triangular quantum dot. Phys. Rev. B 2010, 81, 155401. [Google Scholar] [CrossRef] [Green Version]
- Van Diejen, J.F.; Vinet, L. The Quantum Dynamics of the Compactified Trigonometric Ruijsenaars-Schneider Model. Commun. Math. Phys. 1998, 197, 33–74. [Google Scholar] [CrossRef] [Green Version]
- Cserti, J.; Tichy, G. A simple model for the vibrational modes in honeycomb lattices. Eur. J. Phys. 2004, 25, 723–736. [Google Scholar] [CrossRef] [Green Version]
- Kariyado, T.; Hatsugai, Y. Manipulation of Dirac Cones in Mechanical Graphene. Sci. Rep. 2015, 5, 18107. [Google Scholar] [CrossRef] [Green Version]
- Bourbaki, N. Groupes et Algèbres de Lie, Chapitres 4, 5 et 6; Hermann: Paris, France, 1968. [Google Scholar]
- Vinberg, E.B.; Onishchik, A.L. Lie Groups and Lie Algebras; Springer: New York, NY, USA, 1994. [Google Scholar]
- Humphreys, J.E. Reflection Groups and Coxeter Groups; Cambridge Studies in Advanced Mathematics 29; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar] [CrossRef]
- Springer, T.A. Invariant Theory; Lecture Notes in Mathematics; Springer-Verlag: Berlin, Germany; New York, NY, USA, 1977; Volume 585. [Google Scholar]
- Elashvili, A.; Jibladze, M.; Pataraia, D. Combinatorics of Necklaces and Hermite Reciprocity. J. Algebr. Comb. 1999, 10, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Hrivnák, J.; Motlochová, L.; Patera, J. Cubature formulas of multivariate polynomials arising from symmetric orbit functions. Symmetry 2016, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Van Diejen, J.F.; Emsiz, E. Orthogonality of Macdonald polynomials with unitary parameters. Math. Z. 2014, 276, 517–542. [Google Scholar] [CrossRef] [Green Version]
- Bracewell, R.N. Discrete Hartley transform. J. Opt. Soc. Am. 1983, 73, 1832–1835. [Google Scholar] [CrossRef]
- Hrivnák, J.; Juránek, M. On E-Discretization of Tori of Compact Simple Lie Groups. II. J. Math. Phys. 2017, 58, 103504. [Google Scholar] [CrossRef] [Green Version]
, | , | , | , | ||||
---|---|---|---|---|---|---|---|
∅ | ∅ | ∅ | ∅ | ∅ |
2 | 2 | 4 | 4 | 3 | 2 |
j | j | j | 0 | 1 | 0 | 1 | |||||||
j | j | 0 | 1 | 1 | 0 | 0 | 2 | 3 | 1 | ||||
j | 0 | 1 | 1 | 0 | 0 | 2 | 3 | 1 | |||||
j | 0 | 1 | 0 | 1 | 0 | 1 | 5 | 0 | 6 | ||||
0 | 1 | 0 | 1 | 0 | 2 | 1 | 3 | 0 | 1 | 2 | 0 | 1 | |
1 | 0 | 1 | 0 | 2 | 0 | 3 | 1 | 0 | 1 | 2 | 1 | 0 |
j | j | j | j | j | 0 | n |
j | j | j | j | 0 | 1 | |
j | j | 1 | 0 | |||
j | j | 0 | 1 | |||
j | j | 1 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czyżycki, T.; Hrivnák, J.; Motlochová, L. Generalized Dual-Root Lattice Transforms of Affine Weyl Groups. Symmetry 2020, 12, 1018. https://doi.org/10.3390/sym12061018
Czyżycki T, Hrivnák J, Motlochová L. Generalized Dual-Root Lattice Transforms of Affine Weyl Groups. Symmetry. 2020; 12(6):1018. https://doi.org/10.3390/sym12061018
Chicago/Turabian StyleCzyżycki, Tomasz, Jiří Hrivnák, and Lenka Motlochová. 2020. "Generalized Dual-Root Lattice Transforms of Affine Weyl Groups" Symmetry 12, no. 6: 1018. https://doi.org/10.3390/sym12061018
APA StyleCzyżycki, T., Hrivnák, J., & Motlochová, L. (2020). Generalized Dual-Root Lattice Transforms of Affine Weyl Groups. Symmetry, 12(6), 1018. https://doi.org/10.3390/sym12061018