Difference of Some Positive Linear Approximation Operators for Higher-Order Derivatives
Abstract
:1. Introduction, Definitions and Preliminary Results
- (i)
- It is closed under both “+” and “∘”;
- (ii)
- Both “+” and “∘” are associative;
- (iii)
- 0 is the identity for + and I is the identity for “∘”;
- (iv)
- 0 is an annihilator for “∘”, that is, ;
- (v)
- “+” is commutative;
- (vi)
- “∘” distributes over “+”, that is, both of the distributive laws hold true.
2. Applications of Theorem 2
2.1. Difference Between the Baskakov and the Szász–Mirakyan Operators
2.2. Difference Between the Baskakov and the Szász–Mirakyan–Baskakov Operators
2.3. Difference Between the Baskakov and the Szász–Mirakyan–Kantorovich Operators
2.4. Difference of Two Genuine-Durrmeyer Type Operators
2.5. Difference of the Durrmeyer Operators and the Lupaş–Durrmeyer Operators
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yalcin, F.; Simsek, Y. A new class of symmetric Beta type distributions constructed by means of symmetric Bernstein type basis functions. Symmetry 2020, 12, 779. [Google Scholar] [CrossRef]
- Ansari, K.J.; Ahmad, I.; Mursaleen, M.; Hussain, I. On some statistical approximation by (p,q)-Bleimann, Butzer and Hahn Operators. Symmetry 2018, 10, 731. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Alda, F.; Rubinstein, B.I.P. The Bernstein mechanism: Function release under differential privacy. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI17), San Francisco, CA, USA, 4–9 February 2017; pp. 1705–1711. [Google Scholar]
- Zhou, D.-X.; Jetter, K. Approximation with polynomial kernels and SVM classifiers. Adv. Comput. Math. 2006, 25, 323–344. [Google Scholar] [CrossRef]
- Lupaş, A. The approximation by means of some linear positive operators. In Approximation Theory; Müller, M.W., Felten, M., Mache, D.H., Eds.; Akademie-Verlag: Berlin, Germany, 1995; pp. 201–227. [Google Scholar]
- Gonska, H.; Piţul, P.; Raşa, I. On Peano’s form of the Taylor remainder, Voronovskaja’s theorem and the commutator of positive linear operators. In Proceedings of the 2006 International Conference on Numerical Analysis and Approximation Theory NAAT, Cluj-Napoca, Romania, 5–8 July 2006; Agratini, O., Blaga, P., de Stinta, C.C., Eds.; pp. 55–80. [Google Scholar]
- Gonska, H.; Piţul, P.; Raşa, I. On differences of positive linear operators. Carpathian J. Math. 2006, 22, 65–78. [Google Scholar]
- Gonska, H.; Raşa, I. Differences of positive linear operators and the second order modulus. Carpathian J. Math. 2008, 24, 332–340. [Google Scholar]
- Gonska, H.; Raşa, I.; Rusu, M. Applications of an Ostrowski-type inequality. J. Comput. Anal. Appl. 2012, 14, 19–31. [Google Scholar]
- Acu, A.M.; Rasa, I. New estimates for the differences of positive linear operators. Numer. Algorithms 2016, 73, 775–789. [Google Scholar] [CrossRef]
- Garg, T.; Acu, A.M.; Agrawal, P.N. Weighted approximation and GBS of Chlodowsky-Szász-Kantorovich type operators. Anal. Math. Phys. 2019, 9, 1429–1448. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Finta, Z.; Gupta, V. Direct results for a certain family of summation-integral type operators. Appl. Math. Comput. 2007, 190, 449–457. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Zeng, X.-M. Approximation by means of the Szász-Bézier integral operators. Int. J. Pure Appl. Math. 2004, 14, 283–294. [Google Scholar]
- Srivastava, H.M.; Ícoz, G.; Çekim, B. Approximation properties of an extended family of the Szász-Mirakjan Beta-type operators. Axioms 2019, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Aral, A.; Inoan, D.; Raşa, I. On differences of linear positive operators. Anal. Math. Phys. 2019, 9, 1227–1239. [Google Scholar] [CrossRef]
- Acu, A.M.; Manav, N.; Sofonea, F. Approximation properties of λ-Kantorovich operators. J. Inequal. Appl. 2018, 2018, 202. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Özger, F.; Mohiuddine, S.A. Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter λ. Symmetry 2019, 11, 316. [Google Scholar] [CrossRef] [Green Version]
- Acu, A.M.; Rasa, I. Estimates for the differences of positive linear operators and their derivatives. Numer. Algorithms 2019. [Google Scholar] [CrossRef] [Green Version]
- Acu, A.M.; Hodiş, S.; Raşa, I. A survey on estimates for the differences of positive linear operators. Construct. Math. Anal. 2018, 1, 113–127. [Google Scholar] [CrossRef]
- Gupta, V. Differences of operators of Lupaş type. Construct. Math. Anal. 2018, 1, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V. On difference of operators with applications to Szász type operators. Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. 2019, 113, 2059–2071. [Google Scholar] [CrossRef]
- Gupta, V.; Acu, A.M. On difference of operators with different basis functions. Filomat 2019, 33, 3023–3034. [Google Scholar] [CrossRef]
- Gupta, V.; Rassias, T.M.; Agrawal, P.N.; Acu, A.M. Estimates for the differences of positive linear operators. In Recent Advances in Constructive Approximation Theory; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2018; Volume 138. [Google Scholar]
- Gupta, V.; Tachev, G. A note on the differences of two positive linear operators. Construct. Math. Anal. 2019, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Shisha, O.; Mond, B. The degree of convergence of linear positive operators. Proc. Nat. Acad. Sci. USA 1968, 60, 1196–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, G.; Agrawal, P.N.; Kasana, H.S. Approximation of functions on [0,∞] by a new sequence of modified Szász operators. Math. Forum 1983, 6, 1–11. [Google Scholar]
- Gupta, V. A note on modified Szász operators. Bull. Inst. Math. Acad. Sin. 1993, 21, 275–278. [Google Scholar]
- Gonska, H.; Păltănea, R. Quantitative convergence theorems for a class of Bernstein-Durrmeyer operators preserving linear functions. Ukrain. Math. J. 2010, 62, 913–922. [Google Scholar] [CrossRef]
- Gonska, H.; Păltănea, R. Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions. Czechoslovak Math. J. 2010, 60, 783–799. [Google Scholar] [CrossRef] [Green Version]
- Păltănea, R. A class of Durrmeyer type operators preserving linear functions. Ann. Tiberiu Popoviciu Sem. Funct. Equ. Approx. Convex. 2007, 5, 109–117. [Google Scholar]
- Neer, T.; Agrawal, P.N. A genuine family of Bernstein-Durrmeyer type operators based on Pólya basis functions. Filomat 2017, 31, 2611–2623. [Google Scholar] [CrossRef]
- Durrmeyer, J.L. Une Formule d’inversion de la Transforme de Laplace: Applications a la Theorie des Moments; These de 3e cycle; Faculte des Sciences de l’Universite de Paris: Paris, Francce, 1967. [Google Scholar]
- Lupaş, A. Die Folge der Betaoperatoren. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 1972. [Google Scholar]
- Gupta, V.; Rassias, T.M. Lupaş-Durrmeyer operators based on Pólya distribution. Banach J. Math. Anal. 2014, 8, 146–155. [Google Scholar] [CrossRef]
- Gupta, V. A large family of linear positive operators. Rend. Circ. Mat. Palermo (Ser. II) 2019. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gupta, V. A certain family of summation-integral type operators. Math. Comput. Model. 2003, 37, 1307–1315. [Google Scholar] [CrossRef]
- Gupta, V.; Srivastava, H.M. A general family of the Srivastava-Gupta operators preserving linear functions. Eur. J. Pure Appl. Math. 2018, 11, 575–579. [Google Scholar] [CrossRef]
m | ||
---|---|---|
10 | ||
m | ||
---|---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, V.; Acu, A.M.; Srivastava, H.M. Difference of Some Positive Linear Approximation Operators for Higher-Order Derivatives. Symmetry 2020, 12, 915. https://doi.org/10.3390/sym12060915
Gupta V, Acu AM, Srivastava HM. Difference of Some Positive Linear Approximation Operators for Higher-Order Derivatives. Symmetry. 2020; 12(6):915. https://doi.org/10.3390/sym12060915
Chicago/Turabian StyleGupta, Vijay, Ana Maria Acu, and Hari Mohan Srivastava. 2020. "Difference of Some Positive Linear Approximation Operators for Higher-Order Derivatives" Symmetry 12, no. 6: 915. https://doi.org/10.3390/sym12060915
APA StyleGupta, V., Acu, A. M., & Srivastava, H. M. (2020). Difference of Some Positive Linear Approximation Operators for Higher-Order Derivatives. Symmetry, 12(6), 915. https://doi.org/10.3390/sym12060915