Next Article in Journal
LISA Sensitivity to Gravitational Waves from Sound Waves
Previous Article in Journal
Convective Heat/Mass Transfer Analysis on Johnson-Segalman Fluid in a Symmetric Curved Channel with Peristalsis: Engineering Applications
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some New Newton’s Type Integral Inequalities for Co-Ordinated Convex Functions in Quantum Calculus

by
Miguel Vivas-Cortez
1,*,†,
Muhammad Aamir Ali
2,†,
Artion Kashuri
3,†,
Ifra Bashir Sial
4,† and
Zhiyue Zhang
2,†
1
Pontificia Universidad Católica del Ecuador, Facultad de Ciencias Exactas y Naturales, Escuela de Ciencias Matemáticas y Físicas, Av. 12 de octubre 1076, Apartado 17-01-2184, Ecuador
2
Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
3
Department of Mathematics, Faculty of Technical Science, University Ismail Qemali, 9400 Vlora, Albania
4
School of Control Science and Engineering, Jiangsu University, Zhenjiang 212013, China
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Symmetry 2020, 12(9), 1476; https://doi.org/10.3390/sym12091476
Submission received: 23 July 2020 / Revised: 3 August 2020 / Accepted: 6 August 2020 / Published: 8 September 2020

Abstract

:
Some recent results have been found treating the famous Simpson’s rule in connection with the convexity property of functions and those called generalized convex. The purpose of this article is to address Newton-type integral inequalities by associating with them certain criteria of quantum calculus and the convexity of the functions of various variables. In this article, by using the concept of recently defined q 1 q 2 -derivatives and integrals, some of Newton’s type inequalities for co-ordinated convex functions are revealed. We also employ the limits of q 1 , q 2 1 in new results, and attain some new inequalities of Newton’s type for co-ordinated convex functions through ordinary integral. Finally, we provide a thorough application of the newly obtained key outcomes, these new consequences can be useful in the integral approximation study for symmetrical functions, or with some kind of symmetry.

1. Introduction

For numerical integration and approximations of definite integrals, Simpson’s rules are well-known techniques. Thomas Simpson (1710–1761) was the founder of these known techniques. These techniques are also called Kepler’s rules because Johannes Kepler used similar techniques for numerical integration about 100 years ago. Simpson’s rule contains the three-point Newton-Cotes quadrature rule, so estimates depended on the three-step quadratic core are sometimes called Newton-type results.
(1)
Simpson’s quadrature formula (Simpson’s 1 / 3 rule)
1 ε α α ε F ( s ) d s 1 6 F ( α ) + 4 F α + ε 2 + F ( ε ) .
(2)
Simpson’s second formula or Newton–Cotes quadrature formula (Simpson’s 3 / 8 rule).
1 ε α α ε F ( s ) d s 1 8 F ( α ) + 3 F 2 α + ε 3 + 3 F α + 2 ε 3 + F ( ε ) .
There are numerous estimations correlated to these quadrature rules in the literature, one of them is the subsequent estimation identified as Simpson’s inequality:
Theorem 1.
Suppose that F : α , ε R is a four times continuously differentiable mapping on α , ε , and let F 4 = sup s α , ε F 4 ( s ) < . Then, one has the inequality
1 3 F ( α ) + F ( ε ) 2 + 2 F α + ε 2 1 ε α α ε F ( s ) d s 1 2880 F 4 ε α 4 .
In recent years, especially over the past two decades, several authors have been engaged in the study of inequalities, including the Simpson’s various function classes (Symmetric or Asymmetric). Particularly, some mathematicians have dedicated the most to the study of Simpson and Newton-type consequences for functions with several kinds of generalized convexity, given that the theory of convexity it is an appropriate way to solve a huge number of problems appearing in different areas and subareas of applied and pure mathematics. For an instance, In Reference [1], Dragomir et al. proved some new inequalities of Simpson’s type and gave some application of numerical integration using the obtained results. In Reference [2], Alomari et al. used the notion of s–convexity and proved some new inequalities of Simpson’s type with the application of numerical integration. Afterward, Sarikaya et al. observed the variants of Simpson’s type inequalities based on convexity in Reference [3]. On the other hand, Özdemir et al. used the concept of co–ordinated convexity and proved Simpson’s type inequalities for double integrals in Reference [4]. In Reference [5,6], the authors utilized the concept of harmonic and p–harmonic convexities and gave some Newton-type inequalities. Moreover, Iftikhar et al. in Reference [7] proved some new inequalities of Newton’s type for the functions whose local fractional derivatives are generalized convex.
On the other hand, quantum calculus or q–calculus is sometimes referred to as calculus without limits. In this, we gain q–analogs of mathematical items that maybe got back as q 1 . The Nalli-Ward-Al-Salam q–addition (NWA) and the Jackson-Hahn-Cigler q-addition (JHC) are two kinds of q-addition in this subject. The first one is commutative and associative, but at the same time, the second one is not. That’s why from time to time several q–analogs exist. These operators form the basis of the method which associations hypergeometric collection and q–hypergeometric collection and which gives numerous formulations of q–calculus in a usual form. The history of quantum calculus may be traced reverse to Euler ( 1707 1783 ) , who first added the q in the tracks of Newton’s infinite series. In recent decades, numerous researchers have revealed a keen hobby in investigating quantum calculus accordingly it emerges as an interdisciplinary subject. This is, of course, the quantum analysis is extremely useful in numerous fields and has vast applications in different areas of natural sciences such as computer science and particle physics and furthermore acts as a vital tool for researchers working with analytic number theory or in theoretical physics. Quantum calculus can be considered as a link between Mathematics and Physics. Several scientists who employ quantum calculus are physicists, as quantum calculus has numerous applications in quantum group theory. For some recent consequences in quantum calculus concerned readers are referred to References [8,9,10,11,12,13,14].
In recent years, because of the importance of convexity in numerous fields of applied and pure mathematics, it has been significantly investigated. The theory of convexity and inequalities are strongly connected to each other, therefore various inequalities can be established inside the literature which are proved for convex, generalized convex and differentiable convex functions of single and double variables, see References [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32].
Inspired by these ongoing studies, we establish some new quantum analogs of Newton’s inequalities for q–differentiable co-ordinated convex functions. This is the primary motivation of this paper. The ideas and strategies of the paper may open new venues for the further research in this field.
Throughout in this paper the real numbers q , q 1 , q 2 0 , 1 .

2. Preliminaries of q–Calculus and Some Inequalities

In this section we present some required definitions and related inequalities about q–calculus. For more information about q–calculus, one can refer to References [9,10,11].
Definition 1
([13]). For a continuous function F : a , ε R , the q–derivative of F at s a , ε is characterized by the expression
a d q F s = F s F q s + 1 q a 1 q s a , s a .
The function F is said to be q–differentiable on a , ε if a d q F s exists for all s a , ε . If a = 0 in (1), then 0 d q F s = d q F s , where d q F s is the familiar q-derivative of F at s a , ε defined by the expression (see Reference [12]):
d q F s = F s F q s 1 q s , s 0 .
Definition 2
([13]). Let F : a , ε R be a continuous function. Then, the q a -definite integral on a , ε is defined as
a s F t a d q t = 1 q s a n = 0 q n F q n s + 1 q n a
for s a , ε .
We have to give the following notation which will be used many times in the next sections (see Reference [12]):
n q = q n 1 q 1 .
Moreover, we will need the following lemma in our main results:
Lemma 1
([33]). For α R 1 the following equality holds:
a ε s a α a d q s = ε a α + 1 α + 1 q .
On the other hand, Bermudo et al. gave the following new definition and related Hermite– Hadamard type inequalities:
Definition 3
([17]). Let F : a , ε R be a continuous function. Then, the q ε -definite integral on a , ε is defined as
s ε F t ε d q t = 1 q ε s n = 0 q n F q n s + 1 q n ε ,
for all s a , ε .
Theorem 2
([17]). If F : a , ε R is a convex differentiable function on a , ε and 0 < q < 1 . Then, we have the q-Hermite–Hadamard inequalities
F a + q ε 2 q 1 ε a a ε F s ε d q s F a + q F ε 2 q .
In Reference [20], Latif defined q a c -integral and partial q-derivatives for two variables functions as follows:
Definition 4.
Suppose that F : a , ε × c , d R 2 R is continuous function. Then, the definite q a c -integral on a , ε × c , d is defined by
a s c y F t , s c d q 2 s a d q 1 t = 1 q 1 1 q 2 s a y c × n = 0 m = 0 q 1 q 2 F q 1 n s + 1 q 1 n a , q 2 m y + 1 q 2 m c ,
for all s , y a , ε × c , d .
Lemma 2
([18]). If the assumptions of Definition 4 holds, then
y 1 y s 1 s F t , s a d q 1 t c d q 2 s = y 1 y a s F t , s a d q 1 t c d q 2 s y 1 y a s 1 F t , s a d q 1 t c d q 2 s = c y a s F t , s a d q 1 t c d q 2 s c y 1 a s F t , s a d q 1 t c d q 2 s c y a s 1 F t , s a d q 1 t c d q 2 s + c y 1 a s 1 F t , s a d q 1 t c d q 2 s .
Definition 5
([20]). Let F : a , b × c , d R 2 R be a continuous function of two variables. Then the partial q 1 -derivatives, q 2 -derivatives and q 1 q 2 -derivatives at s , y a , b × c , d can be given as follows:
a q 1 F s , y a q 1 s = F q 1 s + 1 q 1 a , y F s , y 1 q 1 s a , s b ; c q 1 F s , y c q 2 y = F s , q 2 y + 1 q 2 c F s , y 1 q 2 y c , y c ; a , c q 1 , q 2 2 F s , y a q 1 s c q 2 y = 1 s a y c 1 q 1 1 q 2 F q 1 s + 1 q 1 a , q 2 y + 1 q 2 c F q 1 s + 1 q 1 a , y F s , q 2 y + 1 q 2 c + F s , y , s a , y c .
For more details related to q-integrals and derivatives for the functions of two variables one can see Reference [20].
On the other hand, Budak et al. gave the following definitions of q a d , q b c and q b d integrals and related inequalities of Hermite–Hadamard type:
Definition 6
([34]). Suppose that F : a , b × c , d R 2 R is continuous function. Then the following q a d , q c b and q b d integrals on a , b × c , d are defined by
a s y d F t , s d d q 2 s a d q 1 t = 1 q 1 1 q 2 s a d y × n = 0 m = 0 q 1 q 2 F q 1 n s + 1 q 1 n a , q 2 m y + 1 q 2 m d ,
s b c y F t , s c d q 2 s b d q 1 t = 1 q 1 1 q 2 b s y c × n = 0 m = 0 q 1 q 2 F q 1 n s + 1 q 1 n b , q 2 m y + 1 q 2 m c
and
s b y d F t , s d d q 2 s b d q 1 t = 1 q 1 1 q 2 b s d y × n = 0 m = 0 q 1 q 2 F q 1 n s + 1 q 1 n b , q 2 m y + 1 q 2 m d ,
respectively, for all s , y a , b × c , d .
Theorem 3
([34]). Let F : a , b × c , d R 2 R be a coordinated convex function on a , b × c , d . Then we have the following inequalities:
F q 1 a + b 2 q 1 , c + q 2 d 2 q 2 1 2 1 b a a b F s , c + q 2 d 2 q 2 a d q 1 s + 1 d c c d F q 1 a + b 2 q 1 , y d d q 2 y 1 b a d c a b c d F s , y d d q 2 y a d q 1 s q 1 2 2 q 1 d c c d F a , y d d q 2 y + 1 2 2 q 1 d c c d F b , y d d q 2 y + 1 2 2 q 2 b a a b F s , c a d q 1 s + q 2 2 2 q 2 b a a b F s , d a d q 1 s q 1 F a , c + q 1 q 2 F a , d + F b , c + q 2 F b , d 2 q 1 2 q 2
for all q 1 , q 2 0 , 1 .
Theorem 4
([34]). Let F : a , b × c , d R 2 R be a coordinated convex function on a , b × c , d . Then we have the following inequalities:
F a + q 1 b 2 q 1 , q 2 c + d 2 q 2 1 2 1 b a a b F x , q 2 c + d 2 q 2 b d q 1 x + 1 d c c d F a + q 1 b 2 q 1 , y c d q 2 y 1 b a d c a b c d F x , y c d q 2 y b d q 1 x 1 2 2 q 1 d c c d F a , y c d q 2 y + q 1 2 2 q 1 d c c d F b , y c d q 2 y + q 2 2 2 q 2 b a a b F x , c b d q 1 x + 1 2 2 q 2 b a a b F x , d b d q 1 x q 2 F a , c + F a , d + q 1 q 2 F b , c + q 1 F b , d 2 q 1 2 q 2
for all q 1 , q 2 0 , 1 .
Theorem 5
([34]). Let F : a , b × c , d R 2 R be a coordinated convex function on a , b × c , d . Then we have the following inequalities:
F a + q 1 b 2 q 1 , c + q 2 d 2 q 2 1 2 1 b a a b F x , c + q 2 d 2 q 2 b d q 1 x + 1 d c c d F a + q 1 b 2 q 1 y , d d q 2 y 1 b a d c a b c d F x , y d d q 2 y b d q 1 x 1 2 2 q 1 d c c d F a , y d d q 2 y + q 1 2 2 q 1 d c c d F b , y d d q 2 y + 1 2 2 q 2 b a a b F x , c d d q 2 y + q 2 2 2 q 2 b a a b F x , d b d q 1 x F a , c + q 2 F a , d + q 1 F b , c + q 1 q 2 F b , d 2 q 1 2 q 2
for all q 1 , q 2 0 , 1 .
Theorem 6.
( q 1 q 2 -Hölder’s inequality for two variables functions, [20]). Let x , y > 0 , 0 < q 1 , q 2 < 1 , p 1 > 1 such that 1 p 1 + 1 r 1 = 1 . Then
0 x 0 y F x , y G x , y d q 1 x d q 2 y 0 x 0 y F x , y p 1 d q 1 x d q 2 y 1 p 1 0 x 0 y G x , y r 1 d q 1 x d q 2 y 1 r 1 .

3. New q–Derivatives for the Functions of Two Variables

In this section, some new partial q-derivatives for functions of two variables are given.
Definition 7
([35]). Let F : a , b × c , d R 2 R be a continuous function of two variables. Then the partial q 1 -derivatives, q 2 -derivatives and q 1 q 2 -derivatives at x , y a , b × c , d can be given as follows:
b q 1 F x , y b q 1 x = F q 1 x + 1 q 1 b , y F x , y 1 q 1 b x , x b ; d q 1 F x , y b q 2 y = F x , q 2 y + 1 q 2 d F x , y 1 q 2 d y , d y ; a d q 1 , q 2 2 F x , y a q 1 x d q 2 y = 1 x a d y 1 q 1 1 q 2 F q 1 x + 1 q 1 a , q 2 y + 1 q 2 d F q 1 x + 1 q 1 a , y F x , q 2 y + 1 q 2 d + F x , y , x a , y d ; c b q 1 , q 2 2 F x , y b q 1 x c q 2 y = 1 b x y c 1 q 1 1 q 2 F q 1 x + 1 q 1 b , q 2 y + 1 q 2 c F q 1 x + 1 q 1 b , y F x , q 2 y + 1 q 2 c + F x , y , x b , y c ; b , d q 1 , q 2 2 F x , y b q 1 x d q 2 y = 1 b x d y 1 q 1 1 q 2 F q 1 x + 1 q 1 b , q 2 y + 1 q 2 d F q 1 x + 1 q 1 b , y F x , q 2 y + 1 q 2 d + F x , y , x b , y d .

4. New Identity

We deal with an identity which is necessary to attain our main estimations in this section.
Let’s start with the following useful Lemma 3:
Lemma 3.
Let F : Δ R 2 R be a twice partially q 1 q 2 -differentiable function on Δ . If the partial q 1 q 2 -derivative b , d q 1 , q 2 2 F t , s b q 1 t d q 2 s is continuous and integrable on a , b × c , d Δ , then the following identity holds for q 1 q 2 -integrals:
b , d I q 1 , q 2 = b a d c 0 1 0 1 Λ q 1 t Λ q 2 s b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s ,
where
b , d I q 1 , q 2 = 3 64 F a + 2 b 3 , d + F b , c + 2 d 3 + 3 F a + 2 b 3 , c + 2 d 3 + 3 F a + 2 b 3 , 2 c + d 3 + F 2 a + b 3 , d + 3 F 2 a + b 3 , c + 2 d 3 + F b , 2 c + d 3 + 3 F 2 a + b 3 , 2 c + d 3 + F a + 2 b 3 , c + F 2 a + b 3 , c + F a , c + 2 d 3 + F a , 2 c + d 3 + F a , c + F a , d + F b , c + F b , d 64 1 8 b a a b F x , c + 3 F x , c + 2 d 3 + 3 F x , 2 c + d 3 + F x , d b d q 1 x 1 8 d c c d F a , y + 3 F a + 2 b 3 , y + 3 F 2 a + b 3 , y + F b , y d d q 2 y + 1 b a d c a b c d F x , y b d q 1 x d d q 2 y
and
Λ q 1 t = q 1 t 1 8 , t 0 , 1 3 q 1 t 1 2 , t 1 3 , 2 3 q 1 t 7 8 , t 2 3 , 1 ,
Λ q 2 s = q 2 s 1 8 , s 0 , 1 3 q 2 s 1 2 , s 1 3 , 2 3 q 2 s 7 8 , s 2 3 , 1 .
Proof. 
Using Lemma 2, the definition of Λ q 1 t and Λ q 2 s , it is easy to see that
0 1 0 1 Λ q 1 t Λ q 2 s b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s = 9 64 0 1 3 0 1 3 b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s + 0 1 3 0 2 3 b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s + 0 2 3 0 1 3 b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s + 0 2 3 0 2 3 b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s + 3 8 0 1 3 0 1 q 2 s 7 8 b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s + 0 2 3 0 1 q 2 s 7 8 b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s + 0 1 0 1 3 q 1 t 7 8 b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s + 0 1 0 2 3 q 1 t 7 8 b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s + 0 1 0 1 q 1 t 7 8 q 1 t 7 8 b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s = I 1 + I 2 + I 3 + I 4 + I 5 + I 6 + I 7 + I 8 + I 9 .
From Definition 7, we have
b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s = 1 1 q 1 1 q 2 b a d c t s F t q 1 a + 1 t q 1 b , s q 2 c + 1 s q 2 d F t q 1 a + 1 t q 1 b , s c + 1 s d F t a + 1 t b , s q 2 c + 1 s q 2 d + F t a + 1 t b , s c + 1 s d .
We need to calculate the integrals in the right side of (12) in order to finish this proof. By using the definition of q 1 q 2 -integrals, we obtain that
0 1 3 0 1 3 b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s = 1 1 q 1 1 q 2 b a d c 0 1 3 0 1 3 1 t s F t q 1 a + 1 t q 1 b , s q 2 c + 1 s q 2 d F t q 1 a + 1 t q 1 b , s c + 1 s d F t a + 1 t b , s q 2 c + 1 s q 2 d + F t a + 1 t b , s c + 1 s d d q 1 t d q 2 s = 1 b a d c n = 0 m = 0 F q 1 n + 1 3 a + 1 q 1 n + 1 3 b , q 2 m + 1 3 c + 1 q 2 m + 1 3 d n = 0 m = 0 F q 1 n + 1 3 a + 1 q 1 n + 1 3 b , q 2 m 3 c + 1 q 2 m 3 d n = 0 m = 0 F q 1 n 3 a + 1 q 1 n 3 b , q 2 m + 1 3 c + 1 q 2 m + 1 3 d + n = 0 m = 0 F q 1 n 3 a + 1 q 1 n 3 b , q 2 m 3 c + 1 q 2 m 3 d = 1 b a d c F b , d F a + 2 b 3 , d F b , c + 2 d 3 + F a + 2 b 3 , c + 2 d 3 .
Similarly, we get
0 1 3 0 2 3 b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s = 1 b a d c F b , d F a + 2 b 3 , d F b , 2 c + d 3 + F a + 2 b 3 , 2 c + d 3 ,
0 2 3 0 1 3 b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s = 1 b a d c F b , d F 2 a + b 3 , d F b , c + 2 d 3 + F 2 a + b 3 , c + 2 d 3 ,
0 2 3 0 2 3 b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s = 1 b a d c F b , d F 2 a + b 3 , d F b , 2 c + d 3 + F 2 a + b 3 , 2 c + d 3 ,
0 1 3 0 1 b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s = 1 b a d c F b , d F a + 2 b 3 , d F b , c + F a + 2 b 3 , c ,
0 1 0 1 3 b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s = 1 b a d c F b , d F b , c + 2 d 3 F a , d + F a , c + 2 d 3 ,
0 2 3 0 1 b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s = 1 b a d c F b , d F 2 a + b 3 , d F b , c + F 2 a + b 3 , c ,
0 1 0 2 3 b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s = 1 b a d c F b , d F a , d F b , 2 c + d 3 + F a , 2 c + d 3 ,
0 1 0 1 b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s = 1 b a d c F b , d F a , d F b , c + F a , c .
Now from Definition 6, we obtain the following
0 1 3 0 1 s b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s = 1 1 q 1 1 q 2 b a d c 0 1 3 0 1 1 t F t q 1 a + 1 t q 1 b , s q 2 c + 1 s q 2 d F t q 1 a + 1 t q 1 b , s c + 1 s d F t a + 1 t b , s q 2 c + 1 s q 2 d + F t a + 1 t b , s c + 1 s d d q 1 t d q 2 s
= 1 b a d c n = 0 m = 0 q 2 m F q 1 n + 1 3 a + 1 q 1 n + 1 3 b , q 2 m + 1 c + 1 q 2 m + 1 d n = 0 m = 0 q 2 m F q 1 n + 1 3 a + 1 q 1 n + 1 3 b , q 2 m c + 1 q 2 m d n = 0 m = 0 q 2 m F q 1 n 3 a + 1 q 1 n 3 b , q 2 m + 1 c + 1 q 2 m + 1 d + n = 0 m = 0 q 2 m F q 1 n 3 a + 1 q 1 n 3 b , q 2 m c + 1 q 2 m d = 1 b a d c m = 0 q 2 m n = 0 F q 1 n + 1 3 a + 1 q 1 n + 1 3 b , q 2 m + 1 c + 1 q 2 m + 1 d n = 0 F q 1 n 3 a + 1 q 1 n 3 b , q 2 m + 1 c + 1 q 2 m + 1 d + m = 0 q 2 m n = 0 F q 1 n 3 a + 1 q 1 n 3 b , q 2 m c + 1 q 2 m d n = 0 F q 1 n + 1 3 a + 1 q 1 n + 1 3 b , q 2 m c + 1 q 2 m d = 1 b a d c m = 0 q 2 m F b , q 2 m + 1 c + 1 q 2 m + 1 d m = 0 q 2 m F b , q 2 m c + 1 q 2 m d + m = 0 q 2 m F a + 2 b 3 , q 2 m c + 1 q 2 m d m = 0 q 2 m F a + 2 b 3 , q 2 m + 1 c + 1 q 2 m + 1 d = 1 b a d c 1 q 2 q 2 m = 0 q 2 m F b , q 2 m c + 1 q 2 m d 1 q 2 F b , c 1 q 2 q 2 m 0 q 2 m F a + 2 b 3 , q 2 m c + 1 q 2 m d + 1 q 2 F a + 2 b 3 , c = 1 b a d c 1 q 2 d c c d F b , y d d q 2 y 1 q 2 d c c d F a + 2 b 3 , y d d q 2 y 1 q 2 F b , c + 1 q 2 F a + 2 b 3 , c .
Similarly, we get
0 2 3 0 1 s b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s = 1 b a d c 1 q 2 d c c d F b , y d d q 2 y 1 q 2 d c c d F 2 a + b 3 , y d d q 2 y 1 q 2 F b , c + 1 q 2 F 2 a + b 3 , c ,
0 1 0 1 3 t b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s = 1 b a d c 1 q 1 b a a b F x , d b d q 1 x 1 q 1 b a a b F x , c + 2 d 3 b d q 1 x F a , d + F a , c + 2 d 3 ,
0 1 0 2 3 t b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s = 1 b a d c 1 q 1 b a a b F x , d b d q 1 x 1 q 1 b a a b F x , 2 c + 2 3 b d q 1 x F a , d + F a , 2 c + d 3 .
Also, we have
0 1 0 1 s b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s = 1 b a d c 1 q 2 d c c d F b , y d d q 2 y 1 q 2 d c c d F a , y d d q 2 y 1 q 2 F b , c + 1 q 2 F a , c ,
0 1 0 1 t b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s = 1 b a d c 1 q 1 b a a b F x , d b d q 1 x 1 q 1 b a a b F x , c b d q 1 x 1 q 1 F a , d + 1 q 1 F a , c
and
0 1 0 1 t s b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s = 1 b a d c m = 0 n = 0 q 1 n q 2 m F q 1 n + 1 a + 1 q 1 n + 1 b , q 2 m + 1 c + 1 q 2 m + 1 d m = 0 n = 0 q 1 n q 2 m F q 1 n + 1 a + 1 q 1 n + 1 b , q 2 m c + 1 q 2 m d m = 0 n = 0 q 1 n q 2 m F q 1 n a + 1 q 1 n b , q 2 m + 1 c + 1 q 2 m + 1 d + m = 0 n = 0 q 1 n q 2 m F q 1 n a + 1 q 1 n b , q 2 m c + 1 q 2 m d
= 1 b a d c 1 q 1 q 2 m = 0 n = 0 q 1 n q 2 m F q 1 n a + 1 q 1 n b , q 2 m c + 1 q 2 m d m = 0 q 2 m F a , q 2 m c + 1 q 2 m d n = 0 q 1 n F q 1 n a + 1 q 1 n b , c + F a , c 1 q 1 m = 0 n = 0 q 1 n q 2 m F q 1 n a + 1 q 1 n b , q 2 m c + 1 q 2 m d m = 0 q 2 m F a , q 2 m c + 1 q 2 m d 1 q 2 m = 0 n = 0 q 1 n q 2 m F q 1 n a + 1 q 1 n b , q 2 m c + 1 q 2 m d n = 0 q 1 n F q 1 n a + 1 q 1 n b , c + m = 0 n = 0 q 1 n q 2 m F q 1 n a + 1 q 1 n b , q 2 m c + 1 q 2 m d = 1 b a d c 1 q 1 1 q 2 q 1 q 2 m = 0 n = 0 q 1 n q 2 m F q 1 n a + 1 q 1 n b , q 2 m c + 1 q 2 m d 1 q 2 q 1 q 2 m = 0 q 2 m F a , q 2 m c + 1 q 2 m d 1 q 1 q 1 q 2 n = 0 q 1 n F q 1 n a + 1 q 1 n b , c + 1 q 1 q 2 F a , c = 1 b a d c 1 q 1 q 2 b a d c a b c d F x , y b d q 1 x d d q 2 y 1 q 1 q 2 b a a b F x , c b d q 1 x 1 q 1 q 2 d c c d F a , x d d q 2 y + 1 q 1 q 2 F a , c .
From (13)–(29), we attain that
I 1 = 9 64 b a d c F b , d F a + 2 b 3 , d F b , c + 2 d 3 + F a + 2 b 3 , c + 2 d 3 ,
I 2 = 9 64 b a d c F b , d F a + 2 b 3 , d F b , 2 c + d 3 + F a + 2 b 3 , 2 c + d 3 ,
I 3 = 3 8 b a d c 1 d c c d F b , y d d q 2 y 1 d c c d F a + 2 b 3 , y d d q 2 y F b , c + F a + 2 b 3 , c 21 64 b a d c F b , d F a + 2 b 3 , d F b , c + F a + 2 b 3 , c ,
I 4 = 9 64 b a d c F b , d F 2 a + b 3 , d F b , c + 2 d 3 + F 2 a + b 3 , c + 2 d 3 ,
I 5 = 9 64 b a d c F b , d F 2 a + b 3 , d F b , 2 c + d 3 + F 2 a + b 3 , 2 c + d 3 ,
I 6 = 3 8 b a d c 1 d c c d F b , y d d q 2 y 1 d c c d F 2 a + b 3 , y d d q 2 y F b , c + F 2 a + b 3 , c 21 64 b a d c F b , d F 2 a + b 3 , d F b , c + F 2 a + b 3 , c ,
I 7 = 3 8 b a d c 1 b a a b F x , d b d q 1 x 1 b a a b F x , c + 2 d 3 b d q 1 x F a , d + F a , c + 2 d 3 21 64 b a d c F b , d F b , c + 2 d 3 F a , d + F a , c + 2 d 3 ,
I 8 = 3 8 b a d c 1 b a a b F x , d b d q 1 x 1 b a a b F x , 2 c + d 3 b d q 1 x F a , d + F a , 2 c + d 3 21 64 b a d c F b , d F b , 2 c + d 3 F a , d + F a , c + 2 d 3 , I 9 = 1 b a d c 1 b a d c a b c d F x , y b d q 1 x d d q 2 y 1 b a a b F x , c b d q 1 x 1 d c c d F a , y d d q 2 y + F a , c 7 8 b a d c 1 b a a b F x , d b d q 1 x 1 b a a b F x , c b d q 1 x + F a , c F a , d 7 8 b a d c 1 d c c d F b , y d d q 2 y 1 d c c d F a , y d d q 2 y + F a , c F b , c + 49 64 b a d c F b , d F a , d F b , c + F a , c .
Now using the calculated integrals ( I 1 ) ( I 9 ) in (12) and multiplying the resulting one with b a d c , we have the desired equality (11) which accomplishes the proof. □
Remark 1.
Under the given conditions of Lemma 3 with q 1 , q 2 1 , we have the following new identity:
I F = b a d c 0 1 0 1 Λ t Λ s 2 F t a + 1 t b , s c + 1 s d t s d t d s ,
where
I F = 3 64 F a + 2 b 3 , d + F b , c + 2 d 3 + 3 F a + 2 b 3 , c + 2 d 3 + 3 F a + 2 b 3 , 2 c + d 3 + F 2 a + b 3 , d + 3 F 2 a + b 3 , c + 2 d 3 + F b , 2 c + d 3 + 3 F 2 a + b 3 , 2 c + d 3 + F a + 2 b 3 , c + F 2 a + b 3 , c + F a , c + 2 d 3 + F a , 2 c + d 3 + F a , c + F a , d + F b , c + F b , d 64 1 8 b a a b F x , c + 3 F x , c + 2 d 3 + 3 F x , 2 c + d 3 + F x , d d x 1 8 d c c d F a , y + 3 F a + 2 b 3 , y + 3 F 2 a + b 3 , y + F b , y d y + 1 b a d c a b c d F x , y d x d y
and
Λ t = t 1 8 , t 0 , 1 3 t 1 2 , t 1 3 , 2 3 t 7 8 , t 2 3 , 1 ,
Λ s = s 1 8 , s 0 , 1 3 s 1 2 , s 1 3 , 2 3 s 7 8 , s 2 3 , 1 .

5. Some New q 1 q 2 –Newton’s Type Inequalities

For brevity, we give some calculated integrals before giving new estimates.
Ψ 1 ( q ) = 0 1 3 q t 1 8 t d q t = 3 5 q 5 q 2 216 1 + q 1 + q + q 2 , 0 < q < 3 8 160 q 2 + 160 q 69 6912 1 + q 1 + q + q 2 , 3 8 q < 1 ,
Ψ 2 ( q ) = 0 1 3 q t 1 8 1 t d q t = 6 q q 2 15 q 3 216 1 + q 1 + q + q 2 , 0 < q < 3 8 480 q 3 + 248 q 2 + 248 q 3 6912 1 + q 1 + q + q 2 , 3 8 q < 1 ,
Ψ 3 ( q ) = 1 3 2 3 q t 1 2 t d q t = 9 5 q 5 q 2 54 1 + q 1 + q + q 2 , 0 < q < 3 4 6 q 2 + 6 q 3 108 1 + q 1 + q + q 2 , 3 4 q < 1 ,
Ψ 4 ( q ) = 1 3 2 3 q t 1 2 1 t d q t = 5 q + 5 q 2 9 q 3 54 1 + q 1 + q + q 2 , 0 < q < 3 4 6 q 3 + 3 108 1 + q 1 + q + q 2 , 3 4 q < 1 ,
Ψ 5 ( q ) = 2 3 1 q t 7 8 t d q t = 105 47 q 47 q 2 216 1 + q 1 + q + q 2 , 0 < q < 7 8 224 q 2 + 224 q + 525 6912 1 + q 1 + q + q 2 , 7 8 q < 1 ,
Ψ 6 ( q ) = 2 3 1 q t 7 8 1 t d q t = 42 + 53 q + 53 q 2 57 q 3 216 1 + q 1 + q + q 2 , 0 < q < 7 8 96 q 3 + 184 q 2 + 184 q 21 6912 1 + q 1 + q + q 2 , 7 8 q < 1 ,
Ψ 7 ( q ) = 0 1 3 q t 1 8 d q t = 3 5 q 72 1 + q , 0 < q < 3 8 20 q 3 288 1 + q , 3 8 q < 1 ,
Ψ 8 ( q ) = 1 3 2 3 q t 1 2 d q t = 3 3 q 18 1 + q , 0 < q < 3 4 q 18 1 + q , 3 4 q < 1
and
Ψ 9 ( q ) = 2 3 1 q t 7 8 d q t = 21 19 q 72 1 + q , 0 < q < 7 8 21 4 q 288 1 + q , 7 8 q < 1 .
Now we give some new quantum estimates by using the identity in Lemma 3.
Theorem 7.
Let F : Δ R 2 R be a twice partially q 1 q 2 -differentiable function on Δ such that partial q 1 q 2 -derivative b , d q 1 , q 2 2 F t , s b q 1 t d q 2 s is continuous and integrable on a , b × c , d Δ . If b , d q 1 , q 2 2 F t , s b q 1 t d q 2 s is convex on a , b × c , d , then we have the following inequality:
b , d I q 1 , q 2 b a d c × Ψ 1 q 1 + Ψ 3 q 1 + Ψ 5 q 1 Ψ 1 q 2 + Ψ 3 q 2 + Ψ 5 q 2 b , d q 1 , q 2 2 F a , c b q 1 t d q 2 s + Ψ 1 q 1 + Ψ 3 q 1 + Ψ 5 q 1 Ψ 2 q 2 + Ψ 4 q 2 + Ψ 6 q 2 b , d q 1 , q 2 2 F a , d b q 1 t d q 2 s + Ψ 2 q 1 + Ψ 4 q 1 + Ψ 6 q 1 Ψ 1 q 2 + Ψ 3 q 2 + Ψ 5 q 2 b , d q 1 , q 2 2 F b , c b q 1 t d q 2 s + Ψ 2 q 1 + Ψ 4 q 1 + Ψ 6 q 1 Ψ 2 q 2 + Ψ 4 q 2 + Ψ 6 q 2 b , d q 1 , q 2 2 F b , d b q 1 t d q 2 s ,
where q 1 , q 2 0 , 1 .
Proof. 
Taking properties of modulus in Lemma 3, we find that
b , d I q 1 , q 2 b a d c 0 1 0 1 Λ q 1 t Λ q 2 s b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s
Now using the convexity of b , d q 1 , q 2 2 F t , s b q 1 t d q 2 s , (41) becomes
b , d I q 1 , q 2 b a d c 0 1 Λ q 2 s 0 1 Λ q 1 t t b , d q 1 , q 2 2 F a , s c + 1 s d b q 1 t d q 2 s + 1 t b , d q 1 , q 2 2 F b , s c + 1 s d b q 1 t d q 2 s d q 1 t d q 2 s .
Now we compute the integrals that appear in right side of inequality (42).
0 1 Λ q 1 t t b , d q 1 , q 2 2 F a , s c + 1 s d b q 1 t d q 2 s + 1 t b , d q 1 , q 2 2 F b , s c + 1 s d b q 1 t d q 2 s d q 1 t = 0 1 3 t q 1 t 1 8 b , d q 1 , q 2 2 F a , s c + 1 s d b q 1 t d q 2 s d q 1 t + 1 3 2 3 t q 1 t 1 2 b , d q 1 , q 2 2 F a , s c + 1 s d b q 1 t d q 2 s d q 1 t + 2 3 1 t q 1 t 7 8 b , d q 1 , q 2 2 F a , s c + 1 s d b q 1 t d q 2 s d q 1 t + 0 1 3 1 t q 1 t 1 8 b , d q 1 , q 2 2 F b , s c + 1 s d b q 1 t d q 2 s d q 1 t + 1 3 2 3 1 t q 1 t 1 2 b , d q 1 , q 2 2 F b , s c + 1 s d b q 1 t d q 2 s d q 1 t + 2 3 1 1 t q 1 t 7 8 b , d q 1 , q 2 2 F b , s c + 1 s d b q 1 t d q 2 s d q 1 t
From (31)–(36), we obtain
0 1 Λ q 1 t t b , d q 1 , q 2 2 F a , s c + 1 s d b q 1 t d q 2 s + 1 t b , d q 1 , q 2 2 F b , s c + 1 s d b q 1 t d q 2 s d q 1 t = b , d q 1 , q 2 2 F a , s c + 1 s d b q 1 t d q 2 s Ψ 1 q 1 + Ψ 3 q 1 + Ψ 5 q 1 + b , d q 1 , q 2 2 F b , s c + 1 s d b q 1 t d q 2 s Ψ 2 q 1 + Ψ 4 q 1 + Ψ 6 q 1 .
Thus, we have
b , d I q 1 , q 2 b a d c 0 1 Λ q 2 s b , d q 1 , q 2 2 F a , s c + 1 s d b q 1 t d q 2 s Ψ 1 q 1 + Ψ 3 q 1 + Ψ 5 q 1 + b , d q 1 , q 2 2 F b , s c + 1 s d b q 1 t d q 2 s Ψ 2 q 1 + Ψ 4 q 1 + Ψ 6 q 1 d q 2 s
b a d c 0 1 Λ q 2 s s b , d q 1 , q 2 2 F a , c b q 1 t d q 2 s + 1 s b , d q 1 , q 2 2 F a , d b q 1 t d q 2 s × Ψ 1 q 1 + Ψ 3 q 1 + Ψ 5 q 1 + s b , d q 1 , q 2 2 F b , c b q 1 t d q 2 s + 1 s b , d q 1 , q 2 2 F b , d b q 1 t d q 2 s × Ψ 2 q 1 + Ψ 4 q 1 + Ψ 6 q 1 d q 2 s = b a d c Ψ 1 q 1 + Ψ 3 q 1 + Ψ 5 q 1 b , d q 1 , q 2 2 F a , c b q 1 t d q 2 s 0 1 3 s q 2 s 1 8 d q 2 s + 1 3 2 3 s q 2 s 1 2 d q 2 s + 2 3 1 s q 2 s 7 8 d q 2 s + b , d q 1 , q 2 2 F a , d b q 1 t d q 2 s 0 1 3 1 s q 2 s 1 8 d q 2 s + 1 3 2 3 1 s q 2 s 1 2 d q 2 s + 2 3 1 1 s q 2 s 7 8 d q 2 s + b a d c Ψ 2 q 1 + Ψ 4 q 1 + Ψ 6 q 1 b , d q 1 , q 2 2 F b , c b q 1 t d q 2 s 0 1 3 s q 2 s 1 8 d q 2 s + 1 3 2 3 s q 2 s 1 2 d q 2 s + 2 3 1 s q 2 s 7 8 d q 2 s + b , d q 1 , q 2 2 F b , d b q 1 t d q 2 s 0 1 3 1 s q 2 s 1 8 d q 2 s + 1 3 2 3 1 s q 2 s 1 2 d q 2 s + 2 3 1 1 s q 2 s 7 8 d q 2 s .
From (31)–(36), we have
b , d I q 1 , q 2 b a d c × Ψ 1 q 1 + Ψ 3 q 1 + Ψ 5 q 1 Ψ 1 q 2 + Ψ 3 q 2 + Ψ 5 q 2 b , d q 1 , q 2 2 F a , c b q 1 2 t d q 2 s + Ψ 1 q 1 + Ψ 3 q 1 + Ψ 5 q 1 Ψ 2 q 2 + Ψ 4 q 2 + Ψ 6 q 2 b , d q 1 , q 2 2 F a , d b q 1 t d q 2 s + Ψ 2 q 1 + Ψ 4 q 1 + Ψ 6 q 1 Ψ 1 q 2 + Ψ 3 q 2 + Ψ 5 q 2 b , d q 1 , q 2 2 F b , c b q 1 2 t d q 2 s + Ψ 2 q 1 + Ψ 4 q 1 + Ψ 6 q 1 Ψ 2 q 2 + Ψ 4 q 2 + Ψ 6 q 2 b , d q 1 , q 2 2 F b , d b q 1 t d q 2 s ,
which completes the proof. □
Remark 2.
Under the given conditions of Theorem 7 with q 1 , q 2 1 , we attain the following new inequality:
I F 625 b a d c 576 2 F a , c t s + 2 F a , d t s + 2 F b , c t s + 2 F b , d t s 576 .
Corollary 1.
Under the given conditions of Theorem 7 if b , d q 1 , q 2 2 F t , s b q 1 t d q 2 s K , we get
b , d I q 1 , q 2 K b a d c × Ψ 1 q 1 + Ψ 3 q 1 + Ψ 5 q 1 Ψ 1 q 2 + Ψ 3 q 2 + Ψ 5 q 2 + Ψ 1 q 1 + Ψ 3 q 1 + Ψ 5 q 1 Ψ 2 q 2 + Ψ 4 q 2 + Ψ 6 q 2 + Ψ 2 q 1 + Ψ 4 q 1 + Ψ 6 q 1 Ψ 1 q 2 + Ψ 3 q 2 + Ψ 5 q 2 + Ψ 2 q 1 + Ψ 4 q 1 + Ψ 6 q 1 Ψ 2 q 2 + Ψ 4 q 2 + Ψ 6 q 2 .
Theorem 8.
Let F : Δ R 2 R be a twice partially q 1 q 2 -differentiable function on Δ such that the partial q 1 q 2 -derivative b , d q 1 , q 2 2 F t , s b q 1 t d q 2 s is continuous and integrable on a , b × c , d Δ . If b , d q 1 , q 2 2 F t , s b q 1 t d q 2 s p 1 is convex on a , b × c , d for some p 1 > 1 and 1 r 1 + 1 p 1 = 1 , then we have the following inequality:
b , d I q 1 , q 2 b a d c 0 1 0 1 Λ q 1 t Λ q 2 s r 1 d q 1 t d q 2 s 1 r 1 × 1 2 q 1 2 q 2 b , d q 1 , q 2 2 F ( a , c ) b q 1 t d q 2 s p 1 + q 2 2 q 1 2 q 2 b , d q 1 , q 2 2 F ( a , d ) b q 1 t d q 2 s p 1 + q 1 2 q 1 2 q 2 b , d q 1 , q 2 2 F ( b , c ) b q 1 t d q 2 s p 1 + q 1 q 2 2 q 1 2 q 2 b , d q 1 , q 2 2 F ( b , d ) b q 1 t d q 2 s p 1 1 p 1 ,
where q 1 , q 2 ( 0 , 1 ) .
Proof. 
Applying well–known Hölder’s inequality for q 1 q 2 -integrals to the integrals in right side of (41), it is found that
b , d I q 1 , q 2 b a d c 0 1 0 1 Λ q 1 t Λ q 2 s r 1 d q 1 t d q 2 s 1 r 1 × 0 1 0 1 b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s p 1 d q 1 t d q 2 s 1 p 1 .
By applying convexity of b , d q 1 , q 2 2 F t , s b q 1 t d q 2 s p 1 , (44) becomes
b , d I q 1 , q 2 b a d c 0 1 0 1 Λ q 1 t Λ q 2 s r 1 d q 1 t d q 2 s 1 r 1 × 0 1 0 1 t s b , d q 1 , q 2 2 F ( a , c ) b q 1 t d q 2 s p 1 + t 1 s b , d q 1 , q 2 2 F a , d b q 1 t d q 2 s p 1 + 1 t s b , d q 1 , q 2 2 F b , c b q 1 t d q 2 s p 1 + 1 t 1 s b , d q 1 , q 2 2 F b , d b q 1 t d q 2 s p 1 d q 1 t d q 2 s 1 p 1 .
Now, if we apply the concept of Lemma 1 for a = 0 to the above quantum integrals, we attain
0 1 0 1 t s d q 1 t d q 2 s = 0 1 t d q 1 t 0 1 s d q 2 s = 1 2 q 1 2 q 2 ,
0 1 0 1 t 1 s d q 1 t d q 2 s = q 2 2 q 1 2 q 2 ,
0 1 0 1 1 t s d q 1 t d q 2 s = q 1 2 q 1 2 q 2 ,
0 1 0 1 1 t 1 s d q 1 t d q 2 s = q 1 q 2 2 q 1 2 q 2 .
By substituting the calculated integrals (45)–(49) in (45), we obtain the desired inequality (43) which finishes the proof. □
Corollary 2.
Under the given conditions of Theorem 8 if b , d q 1 , q 2 2 F t , s b q 1 t d q 2 s K , we get
b , d I q 1 , q 2 K b a d c 2 q 1 2 q 2 p 1 0 1 0 1 Λ q 1 t Λ q 2 s r 1 d q 1 t d q 2 s 1 r 1 .
Theorem 9.
Let F : Δ R 2 R be a twice partially q 1 q 2 -differentiable function on Δ such that the partial q 1 q 2 -derivative b , d q 1 , q 2 2 F t , s b q 1 t d q 2 s is continuous and integrable on a , b × c , d Δ . If b , d q 1 , q 2 2 F t , s b q 1 t d q 2 s p is convex on a , b × c , d for some p 1 . Then, we have following inequality
b , d I q 1 , q 2 ( F ) b a d c Ψ 7 1 1 p q 1 Ψ 7 1 1 p q 2 × Ψ 1 q 1 Ψ 1 q 2 b , d q 1 , q 2 2 F a , c b q 1 t d q 2 s p + Ψ 2 q 2 b , d q 1 , q 2 2 F a , d b q 1 t d q 2 s p + Ψ 2 q 1 Ψ 1 q 2 b , d q 1 , q 2 2 F b , c b q 1 t d q 2 s p + Ψ 2 q 2 b , d q 1 , q 2 2 F b , d b q 1 t d q 2 s p 1 p + Ψ 7 1 1 p q 1 Ψ 8 1 1 p q 2 × Ψ 1 q 1 Ψ 3 q 2 b , d q 1 , q 2 2 F a , c b q 1 t d q 2 s p + Ψ 4 q 2 b , d q 1 , q 2 2 F a , d b q 1 t d q 2 s p + Ψ 2 q 1 Ψ 3 q 2 b , d q 1 , q 2 2 F b , c b q 1 t d q 2 s p + Ψ 4 q 2 b , d q 1 , q 2 2 F b , d b q 1 t d q 2 s p 1 p + Ψ 7 1 1 p q 1 Ψ 9 1 1 p q 2 × Ψ 1 q 1 Ψ 5 q 2 b , d q 1 , q 2 2 F a , c b q 1 t d q 2 s p + Ψ 6 q 2 b , d q 1 , q 2 2 F a , d b q 1 t d q 2 s p + Ψ 2 q 1 Ψ 5 q 2 b , d q 1 , q 2 2 F b , c b q 1 t d q 2 s p + Ψ 6 q 2 b , d q 1 , q 2 2 F b , d b q 1 t d q 2 s p 1 p + Ψ 8 1 1 p q 1 Ψ 7 1 1 p q 2 × Ψ 3 q 1 Ψ 1 q 2 b , d q 1 , q 2 2 F a , c b q 1 t d q 2 s p + Ψ 2 q 2 b , d q 1 , q 2 2 F a , d b q 1 t d q 2 s p + Ψ 4 q 1 Ψ 1 q 2 b , d q 1 , q 2 2 F b , c b q 1 t d q 2 s p + Ψ 2 q 2 b , d q 1 , q 2 2 F b , d b q 1 t d q 2 s p 1 p + Ψ 8 1 1 p q 1 Ψ 8 1 1 p q 2 × Ψ 3 q 1 Ψ 3 q 2 b , d q 1 , q 2 2 F a , c b q 1 t d q 2 s p + Ψ 4 q 2 b , d q 1 , q 2 2 F a , d b q 1 t d q 2 s p + Ψ 4 q 1 Ψ 3 q 2 b , d q 1 , q 2 2 F b , c b q 1 t d q 2 s p + Ψ 4 q 2 b , d q 1 , q 2 2 F b , d b q 1 t d q 2 s p 1 p + Ψ 8 1 1 p q 1 Ψ 9 1 1 p q 2 × Ψ 3 q 1 Ψ 5 q 2 b , d q 1 , q 2 2 F a , c b q 1 t d q 2 s p + Ψ 6 q 2 b , d q 1 , q 2 2 F a , d b q 1 t d q 2 s p + Ψ 4 q 1 Ψ 5 q 2 b , d q 1 , q 2 2 F b , c b q 1 t d q 2 s p + Ψ 6 q 2 b , d q 1 , q 2 2 F b , d b q 1 t d q 2 s p 1 p + Ψ 9 1 1 p q 1 Ψ 7 1 1 p q 2 × Ψ 5 q 1 Ψ 1 q 2 b , d q 1 , q 2 2 F a , c b q 1 t d q 2 s p + Ψ 2 q 2 b , d q 1 , q 2 2 F a , d b q 1 t d q 2 s p + Ψ 6 q 1 Ψ 1 q 2 b , d q 1 , q 2 2 F b , c b q 1 t d q 2 s p + Ψ 2 q 2 b , d q 1 , q 2 2 F b , d b q 1 t d q 2 s p 1 p + Ψ 9 1 1 p q 1 Ψ 8 1 1 p q 2 × Ψ 5 q 1 Ψ 3 q 2 b , d q 1 , q 2 2 F a , c b q 1 t d q 2 s p + Ψ 4 q 2 b , d q 1 , q 2 2 F a , d b q 1 t d q 2 s p + Ψ 6 q 1 Ψ 3 q 2 b , d q 1 , q 2 2 F b , c b q 1 t d q 2 s p + Ψ 4 q 2 b , d q 1 , q 2 2 F b , d b q 1 t d q 2 s p 1 p + Ψ 9 1 1 p q 1 Ψ 9 1 1 p q 2 × Ψ 5 q 1 Ψ 5 q 2 b , d q 1 , q 2 2 F a , c b q 1 t d q 2 s p + Ψ 6 q 2 b , d q 1 , q 2 2 F a , d b q 1 t d q 2 s p + Ψ 6 q 1 Ψ 5 q 2 b , d q 1 , q 2 2 F b , c b q 1 t d q 2 s p + Ψ 6 q 2 b , d q 1 , q 2 2 F b , d b q 1 t d q 2 s p 1 p ,
where 0 < q 1 , q 2 < 1 .
Proof. 
Applying well-known power mean inequality for q 1 q 2 -integrals to the integrals in right side of (41), it is found that
b , d I q 1 , q 2 b a d c 0 1 3 0 1 3 q 1 t 1 8 q 2 s 1 8 d q 1 t d q 2 s 1 1 p × 0 1 3 0 1 3 q 1 t 1 8 q 2 s 1 8 × b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s p d q 1 t d q 2 s 1 p + 0 1 3 1 3 2 3 q 1 t 1 8 q 2 s 1 2 d q 1 t d q 2 s 1 1 p × 0 1 3 1 3 2 3 q 1 t 1 8 q 2 s 1 2 × b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s p 1 d q 1 t d q 2 s 1 p + 0 1 3 2 3 1 q 1 t 1 8 q 2 s 7 8 d q 1 t d q 2 s 1 1 p × 0 1 3 2 3 1 q 1 t 1 8 q 2 s 7 8 × b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s p d q 1 t d q 2 s 1 p + 1 3 2 3 0 1 3 q 1 t 1 2 q 2 s 1 8 d q 1 t d q 2 s 1 1 p × 1 3 2 3 0 1 3 q 1 t 1 2 q 2 s 1 8 × b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s p d q 1 t d q 2 s 1 p + 1 3 2 3 1 3 2 3 q 1 t 1 2 q 2 s 1 2 d q 1 t d q 2 s 1 1 p × 1 3 2 3 1 3 2 3 q 1 t 1 2 q 2 s 1 2 × b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s p d q 1 t d q 2 s 1 p + 1 3 2 3 2 3 1 q 1 t 1 2 q 2 s 7 8 d q 1 t d q 2 s 1 1 p × 1 3 2 3 2 3 1 q 1 t 1 2 q 2 s 7 8 × b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s p d q 1 t d q 2 s 1 p + 2 3 1 0 1 3 q 1 t 7 8 q 2 s 1 8 d q 1 t d q 2 s 1 1 p × 2 3 1 0 1 3 q 1 t 7 8 q 2 s 1 8 × b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s p d q 1 t d q 2 s 1 p + 2 3 1 1 3 2 3 q 1 t 7 8 q 2 s 1 2 d q 1 t d q 2 s 1 1 p × 2 3 1 1 3 2 3 q 1 t 7 8 q 2 s 1 2 × b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s p d q 1 t d q 2 s 1 p + 2 3 1 2 3 1 q 1 t 7 8 q 2 s 7 8 d q 1 t d q 2 s 1 1 p × 2 3 1 2 3 1 q 1 t 7 8 q 2 s 7 8 × b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s p d q 1 t d q 2 s 1 p .
By applying convexity of b , d q 1 , q 2 2 F t , s b q 1 t d q 2 s p , we have
0 1 3 0 1 3 q 1 t 1 8 q 2 s 1 8 d q 1 t d q 2 s 1 1 p × 0 1 3 0 1 3 q 1 t 1 8 q 2 s 1 8 × b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s p d q 1 t d q 2 s 1 p = Ψ 7 1 1 p q 1 Ψ 7 1 1 p q 2 × 0 1 3 q 2 s 1 8 0 1 3 q 1 t 1 8 × b , d q 1 , q 2 2 F t a + 1 t b , s c + 1 s d b q 1 t d q 2 s p d q 1 t d q 2 s 1 p Ψ 7 1 1 p q 1 Ψ 7 1 1 p q 2 × 0 1 3 q 2 s 1 8 b , d q 1 , q 2 2 F a , s c + 1 s d b q 1 t d q 2 s p 0 1 3 t q 1 t 1 8 + b , d q 1 , q 2 2 F b , s c + 1 s d b q 1 t d q 2 s p 0 1 3 1 t q 1 t 1 8 1 p = Ψ 7 1 1 p q 1 Ψ 7 1 1 p q 2 × 0 1 3 q 2 s 1 8 b , d q 1 , q 2 2 F a , s c + 1 s d b q 1 t d q 2 s p Ψ 1 q 1 + b , d q 1 , q 2 2 F b , s c + 1 s d b q 1 t d q 2 s p Ψ 2 q 1 1 p Ψ 7 1 1 p q 1 Ψ 7 1 1 p q 2 × Ψ 1 q 1 b , d q 1 , q 2 2 F a , c b q 1 t d q 2 s p 0 1 3 s q 2 s 1 8 + b , d q 1 , q 2 2 F a , d b q 1 t d q 2 s p 0 1 3 1 s q 2 s 1 8 + Ψ 1 q 1 b , d q 1 , q 2 2 F b , c b q 1 t d q 2 s p 0 1 3 s q 2 s 1 8 + b , d q 1 , q 2 2 F b , d b q 1 t d q 2 s p 0 1 3 1 s q 2 s 1 8 1 p
= Ψ 7 1 1 p q 1 Ψ 7 1 1 p q 2 × Ψ 1 q 1 b , d q 1 , q 2 2 F a , c b q 1 t d q 2 s p Ψ 1 q 2 + b , d q 1 , q 2 2 F a , d b q 1 t d q 2 s p Ψ 2 q 2 + Ψ 1 q 1 b , d q 1 , q 2 2 F b , c b q 1 t d q 2 s p Ψ 1 q 2 + b , d q 1 , q 2 2 F b , d b q 1 t d q 2 s p Ψ 2 q 2 1 p .
By using similar operations we can compute the remaining integrals that involved in (51). Thus, the proof is finished. □
Remark 3.
Under the given conditions of Theorem 9 with q 1 , q 2 1 , we attain the following new inequality
I ( F ) b a d c 1296 289 256 1 1 p 251 1152 251 1152 2 F a , c t s p + 973 1152 2 F a , d t s p + 973 1152 251 1152 2 F b , c t s p + 973 1152 2 F b , d t s p 1 p + 17 16 1 1 p 251 1152 1 2 2 F a , c t s p + 1 2 2 F a , d t s p + 973 1152 1 2 2 F b , c t s p + 1 2 2 F b , d t s p 1 p + 289 56 1 1 p 251 1152 973 1152 2 F a , c t s p + 251 1152 2 F a , d t s p + 973 1152 973 1152 2 F b , c t s p + 251 1152 2 F b , d t s p 1 p + 17 16 1 1 p 1 2 251 1152 2 F a , c t s p + 973 1152 2 F a , d t s p + 1 2 251 1152 2 F b , c t s p + 973 1152 2 F b , d t s p 1 p + 1 2 1 2 2 F a , c t s p + 1 2 2 F a , d t s p + 1 2 1 2 2 F a , c t s p + 1 2 2 F a , d t s p 1 p + 17 16 1 1 p 1 2 973 1152 2 F b , c t s p + 251 1152 2 F b , d t s p + 1 2 973 1152 2 F b , c t s p + 251 1152 2 F b , d t s p 1 p + 289 256 1 1 p 973 1152 251 1152 2 F a , c t s p + 973 1152 2 F a , d t s p + 251 1152 251 1152 2 F b , c t s p + 973 1152 2 F b , d t s p 1 p + 17 16 1 1 p 973 1152 1 2 2 F a , c t s p + 1 2 2 F a , d t s p + 251 1152 1 2 2 F b , c t s p + 1 2 2 F b , d t s p 1 p + 289 256 1 1 p 973 1152 973 1152 2 F a , c t s p + 251 1152 2 F a , d t s p + 251 1152 973 1152 2 F b , c t s p + 251 1152 2 F b , d t s p 1 p .
Corollary 3.
Under the given conditions of Theorem 9 if b , d q 1 , q 2 2 F ( t , s ) b q 1 t d q 2 s K , we obtain
b , d I q 1 , q 2 ( F ) K b a d c Ψ 7 1 1 p q 1 Ψ 7 1 1 p q 2 × Ψ 1 q 1 + Ψ 2 q 1 Ψ 1 q 2 + Ψ 2 q 2 1 p
+ Ψ 7 1 1 p q 1 Ψ 8 1 1 p q 2 Ψ 1 q 1 + Ψ 2 q 1 Ψ 3 q 2 + Ψ 4 q 2 1 p + Ψ 7 1 1 p q 1 Ψ 9 1 1 p q 2 Ψ 1 q 1 + Ψ 2 q 1 Ψ 5 q 2 + Ψ 6 q 2 1 p + Ψ 8 1 1 p q 1 Ψ 7 1 1 p q 2 Ψ 3 q 1 + Ψ 4 q 1 Ψ 1 q 2 + Ψ 2 q 2 1 p + Ψ 8 1 1 p q 1 Ψ 8 1 1 p q 2 Ψ 3 q 1 + Ψ 4 q 1 Ψ 3 q 2 + Ψ 4 q 2 1 p + Ψ 8 1 1 p q 1 Ψ 9 1 1 p q 2 Ψ 3 q 1 + Ψ 4 q 1 Ψ 5 q 2 + Ψ 6 q 2 1 p + Ψ 9 1 1 p q 1 Ψ 7 1 1 p q 2 Ψ 5 q 1 + Ψ 6 q 1 Ψ 1 q 2 + Ψ 2 q 2 1 p + Ψ 9 1 1 p q 1 Ψ 8 1 1 p q 2 Ψ 5 q 1 + Ψ 6 q 1 Ψ 3 q 2 + Ψ 4 q 2 1 p + Ψ 9 1 1 p q 1 Ψ 9 1 1 p q 2 Ψ 5 q 1 + Ψ 6 q 1 Ψ 5 q 2 + Ψ 6 q 2 1 p ,
where 0 < q 1 , q 2 < 1 .

6. Applications

In this section, using our main results we can derive some applications for the following two convex functions:
F ( t , s ) = t m s n , where m , n > 1 and F ( t , s ) = e t + s .
Since
I F = 3 64 F a + 2 b 3 , d + F b , c + 2 d 3 + 3 F a + 2 b 3 , c + 2 d 3 + 3 F a + 2 b 3 , 2 c + d 3 + F 2 a + b 3 , d + 3 F 2 a + b 3 , c + 2 d 3 + F b , 2 c + d 3 + 3 F 2 a + b 3 , 2 c + d 3 + F a + 2 b 3 , c + F 2 a + b 3 , c + F a , c + 2 d 3 + F a , 2 c + d 3 + F a , c + F a , d + F b , c + F b , d 64 1 8 b a a b F x , c + 3 F x , c + 2 d 3 + 3 F x , 2 c + d 3 + F x , d d x 1 8 d c c d F a , y + 3 F a + 2 b 3 , y + 3 F 2 a + b 3 , y + F b , y d y + 1 b a d c a b c d F x , y d x d y ,
we need to calculate first each one of the above expressions for both convex functions, respectively.
F a + 2 b 3 , d = a + 2 b 3 m d n , F b , c + 2 d 3 = b m c + 2 d 3 n ,
F a + 2 b 3 , c + 2 d 3 = a + 2 b 3 m c + 2 d 3 n , F a + 2 b 3 , 2 c + d 3 = a + 2 b 3 m 2 c + d 3 n ,
F 2 a + b 3 , d = 2 a + b 3 m d n , F 2 a + b 3 , c + 2 d 3 = 2 a + b 3 m c + 2 d 3 n ,
F b , 2 c + d 3 = b m 2 c + d 3 n , F 2 a + b 3 , 2 c + d 3 = 2 a + b 3 m 2 c + d 3 n ,
F a + 2 b 3 , c = a + 2 b 3 m c n , F 2 a + b 3 , c = 2 a + b 3 m c n ,
F a , c + 2 d 3 = a m c + 2 d 3 n , F a , 2 c + d 3 = a m 2 c + d 3 n ,
F a , c = a m c n , F a , d = a m d n , F b , c = b m c n , F b , d = b m d n ,
a b F x , c d x = a b x m c n d x = c n b m + 1 a m + 1 m + 1 ,
a b F x , c + 2 d 3 d x = a b x m c + 2 d 3 n d x = c + 2 d 3 n b m + 1 a m + 1 m + 1 ,
a b F x , 2 c + d 3 d x = a b x m 2 c + d 3 n d x = 2 c + d 3 n b m + 1 a m + 1 m + 1 ,
a b F x , d d x = a b x m d n d x = d n b m + 1 a m + 1 m + 1 ,
c d F a , y d y = c d a m y n d y = a m d n + 1 c n + 1 n + 1 ,
c d F a + 2 b 3 , y d y = c d a + 2 b 3 m y n d y = a + 2 b 3 m d n + 1 c n + 1 n + 1 ,
c d F 2 a + b 3 , y d y = c d 2 a + b 3 m y n d y = 2 a + b 3 m d n + 1 c n + 1 n + 1 ,
c d F b , y d y = c d b m y n d y = b m d n + 1 c n + 1 n + 1 ,
a b c d F x , y d x d y = a b c d x m y n d x d y = b m + 1 a m + 1 m + 1 d n + 1 c n + 1 n + 1 ;
and
F a + 2 b 3 , d = e a + 2 b 3 + d , F b , c + 2 d 3 = e b + c + 2 d 3 ,
F a + 2 b 3 , c + 2 d 3 = e a + 2 b 3 + c + 2 d 3 , F a + 2 b 3 , 2 c + d 3 = e a + 2 b 3 + 2 c + d 3 ,
F 2 a + b 3 , d = e 2 a + b 3 + d , F 2 a + b 3 , c + 2 d 3 = e 2 a + b 3 + c + 2 d 3 ,
F b , 2 c + d 3 = e b + 2 c + d 3 , F 2 a + b 3 , 2 c + d 3 = e 2 a + b 3 + 2 c + d 3 ,
F a + 2 b 3 , c = e a + 2 b 3 + c , F 2 a + b 3 , c = e 2 a + b 3 + c ,
F a , c + 2 d 3 = e a + c + 2 d 3 , F a , 2 c + d 3 = e a + 2 c + d 3 ,
F a , c = e a + c , F a , d = e a + d , F b , c = e b + c , F b , d = e b + d ,
a b F x , c d x = a b e x + c d x = e b + c e a + c = e c e b e a ,
a b F x , c + 2 d 3 d x = a b e x + c + 2 d 3 d x = e b + c + 2 d 3 e a + c + 2 d 3 = e c + 2 d 3 e b e a ,
a b F x , 2 c + d 3 d x = a b e x + 2 c + d 3 d x = e b + 2 c + d 3 e a + 2 c + d 3 = e 2 c + d 3 e b e a ,
a b F x , d d x = a b e x + d d x = e b + d e a + d = e d e b e a ,
c d F a , y d y = c d e a + y d y = e a + d e a + c = e a e d e c ,
c d F a + 2 b 3 , y d y = c d e a + 2 b 3 + y d y = e a + 2 b 3 + d e a + 2 b 3 + c = e a + 2 b 3 e d e c ,
c d F 2 a + b 3 , y d y = c d e 2 a + b 3 + y d y = e 2 a + b 3 + d e 2 a + b 3 + c = e 2 a + b 3 e d e c ,
c d F b , y d y = c d e b + y d y = e b + d e b + c = e b e d e c ,
a b c d F x , y d x d y = a b c d e x + y d x d y = e b e a e d e c .
Proposition 1.
Let 0 < a < b and 0 < c < d , where m , n > 1 . Then, we get
I F 625 m n b a d c 576 a m 1 + b m 1 c n 1 + d n 1 576 .
Proof. 
Using Theorem 7 with q 1 , q 2 1 and taking F ( t , s ) = t m s n , where m , n > 1 , the desire result is obtained. □
Proposition 2.
Let a , b , c , d R . Then, we have
I F 625 b a d c 576 e a + e b e c + e d 576 .
Proof. 
Using Theorem 7 with q 1 , q 2 1 and choosing F ( t , s ) = e t + s , the above result is captured. □
Proposition 3.
Let 0 < a < b and 0 < c < d , where m , n > 1 . Then for p 1 , we get
I ( F ) m n b a d c 1296 289 256 1 1 p 251 1152 251 1152 a p ( m 1 ) c p ( n 1 ) + 973 1152 a p ( m 1 ) d p ( n 1 ) + 973 1152 251 1152 b p ( m 1 ) c p ( n 1 ) + 973 1152 b p ( m 1 ) d p ( n 1 ) 1 p + 17 16 1 1 p 251 1152 1 2 a p ( m 1 ) c p ( n 1 ) + 1 2 a p ( m 1 ) d p ( n 1 ) + 973 1152 1 2 b p ( m 1 ) c p ( n 1 ) + 1 2 b p ( m 1 ) d p ( n 1 ) 1 p + 289 56 1 1 p 251 1152 973 1152 a p ( m 1 ) c p ( n 1 ) + 251 1152 a p ( m 1 ) d p ( n 1 ) + 973 1152 973 1152 b p ( m 1 ) c p ( n 1 ) + 251 1152 b p ( m 1 ) d p ( n 1 ) 1 p + 17 16 1 1 p 1 2 251 1152 a p ( m 1 ) c p ( n 1 ) + 973 1152 a p ( m 1 ) d p ( n 1 ) + 1 2 251 1152 b p ( m 1 ) c p ( n 1 ) + 973 1152 b p ( m 1 ) d p ( n 1 ) 1 p + 1 2 1 2 a p ( m 1 ) c p ( n 1 ) + 1 2 a p ( m 1 ) d p ( n 1 ) + 1 2 1 2 a p ( m 1 ) c p ( n 1 ) + 1 2 a p ( m 1 ) d p ( n 1 ) 1 p + 17 16 1 1 p 1 2 973 1152 b p ( m 1 ) c p ( n 1 ) + 251 1152 b p ( m 1 ) d p ( n 1 ) + 1 2 973 1152 b p ( m 1 ) c p ( n 1 ) + 251 1152 b p ( m 1 ) d p ( n 1 ) 1 p + 289 256 1 1 p 973 1152 251 1152 a p ( m 1 ) c p ( n 1 ) + 973 1152 a p ( m 1 ) d p ( n 1 ) + 251 1152 251 1152 b p ( m 1 ) c p ( n 1 ) + 973 1152 b p ( m 1 ) d p ( n 1 ) 1 p + 17 16 1 1 p 973 1152 1 2 a p ( m 1 ) c p ( n 1 ) + 1 2 a p ( m 1 ) d p ( n 1 ) + 251 1152 1 2 b p ( m 1 ) c p ( n 1 ) + 1 2 b p ( m 1 ) d p ( n 1 ) 1 p + 289 256 1 1 p 973 1152 973 1152 a p ( m 1 ) c p ( n 1 ) + 251 1152 a p ( m 1 ) d p ( n 1 ) + 251 1152 973 1152 b p ( m 1 ) c p ( n 1 ) + 251 1152 b p ( m 1 ) d p ( n 1 ) 1 p .
Proof. 
Using Theorem 9 with q 1 , q 2 1 and taking F ( t , s ) = t m s n , where m , n > 1 , the desire result is obtained. □
Proposition 4.
Let a , b , c , d R . Then for p 1 , we have
I ( F ) b a d c 1296 289 256 1 1 p 251 1152 251 1152 e p ( a + c ) + 973 1152 e p ( a + d ) + 973 1152 251 1152 e p ( b + c ) + 973 1152 e p ( b + d ) 1 p + 17 16 1 1 p 251 1152 1 2 e p ( a + c ) + 1 2 e p ( a + d ) + 973 1152 1 2 e p ( b + c ) + 1 2 e p ( b + d ) 1 p + 289 56 1 1 p 251 1152 973 1152 e p ( a + c ) + 251 1152 e p ( a + d ) + 973 1152 973 1152 e p ( b + c ) + 251 1152 e p ( b + d ) 1 p + 17 16 1 1 p 1 2 251 1152 e p ( a + c ) + 973 1152 e p ( a + d ) + 1 2 251 1152 e p ( b + c ) + 973 1152 e p ( b + d ) 1 p + 1 2 1 2 e p ( a + c ) + 1 2 e p ( a + d ) + 1 2 1 2 e p ( a + c ) + 1 2 e p ( a + d ) 1 p + 17 16 1 1 p 1 2 973 1152 e p ( b + c ) + 251 1152 e p ( b + d ) + 1 2 973 1152 e p ( b + c ) + 251 1152 e p ( b + d ) 1 p + 289 256 1 1 p 973 1152 251 1152 e p ( a + c ) + 973 1152 e p ( a + d ) + 251 1152 251 1152 e p ( b + c ) + 973 1152 e p ( b + d ) 1 p + 17 16 1 1 p 973 1152 1 2 e p ( a + c ) + 1 2 e p ( a + d ) + 251 1152 1 2 e p ( b + c ) + 1 2 e p ( b + d ) 1 p + 289 256 1 1 p 973 1152 973 1152 e p ( a + c ) + 251 1152 e p ( a + d ) + 251 1152 973 1152 e p ( b + c ) + 251 1152 e p ( b + d ) 1 p .
Proof. 
Using Theorem 9 with q 1 , q 2 1 and choosing F ( t , s ) = e t + s , the above result is captured. □
All the results presented and demonstrated in this article find application both in the mathematical field, from the point of view of numerical analysis, and in that of the physical sciences and engineering. They can even be used in the area of approximation and evaluation of integrals under the work scheme used in mathematical engineering.

7. Conclusions

In this paper, using the notion of q 1 q 2 -derivatives and integrals, some of Newton’s type inequalities for co-ordinated convex functions are given. Special cases of the key results of the present paper are also discussed and new inequalities are obtained. To the best of our knowledge, these results are new in the literature. As future directions, one may find similar inequalities through different types of convexities, with emphasis on functions with some type of symmetry.

Author Contributions

All authors contributed equally in the preparation of the present work: the theorems and corollaries M.V.-C., M.A.A., A.K., I.B.S. and Z.Z., the review of the articles and books cited M.V.-C., M.A.A., A.K., I.B.S. and Z.Z.; formal analysis M.V.-C., M.A.A., A.K., I.B.S. and Z.Z.; writing–original draft preparation and writing–review and editing M.V.-C., M.A.A., A.K., I.B.S. and Z.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Dirección de Investigación from Pontificia Universidad Católica del Ecuador as a part of the research project entitled: Some inequalities using generalized convexity.

Acknowledgments

Miguel Vivas-Cortez wants to thank to Dirección de Investigación from Pontificia Universidad Católica del Ecuador. Also, all the authors want to thank to those appointed to review this article and the editorial team of Symmetry.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef] [Green Version]
  2. Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Coll. 2009, 12, 1–18. [Google Scholar]
  3. Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for convex functions. RGMIA Res. Rep. Coll. 2010, 13, 1–8. [Google Scholar]
  4. Özdemir, M.E.; Akdemir, A.O.; Kavurmaci, H.; Avci, M. On the Simpson’s inequality for co-ordinated convex functions. arXiv 2010, arXiv:1101.0075v2. [Google Scholar]
  5. Noor, M.A.; Noor, K.I.; Iftikhar, S. Some Newton’s type inequalities for harmonic convex functions. J. Adv. Math. Stud. 2016, 9, 7–16. [Google Scholar]
  6. Noor, M.A.; Noor, K.I.; Iftikhar, S. Newton inequalities for p-harmonic convex functions. Honam Math. J. 2018, 40, 239–250. [Google Scholar]
  7. Iftikhar, S.; Komam, P.; Erden, S. Newton’s type integral inequalities via local fractional integrals. Fractals 2020, 28, 1–12. [Google Scholar] [CrossRef]
  8. Ernst, T. The History of q-calculus and a New Method; Department of Mathematics, Uppsala University: Stockholm, Sweden, 2000. [Google Scholar]
  9. Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
  10. Gauchman, H. Integral inequalities in q-calculus. Comput. Math. Appl. 2004, 47, 281–300. [Google Scholar] [CrossRef] [Green Version]
  11. Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
  12. Kac, V.; Cheung, P. Quantum Calculus; Springer: Universitext, New York, NY, USA, 2002. [Google Scholar]
  13. Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 282, 1–19. [Google Scholar] [CrossRef] [Green Version]
  14. Vivas-Cortez, M.; Abdeljawad, T.; Mohammed, P.O.; Rangel-Oliveros, Y. Simpson’s Integral Inequalities for Twice Differentiable Convex Functions. Math. Probl. Eng. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
  15. Alp, N.; Sarikaya, M.Z.; Kunt, M.; İşcan, İ. q–Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King-Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
  16. Alp, N.; Sarikaya, M.Z. Hermite–Hadamard’s type inequalities for co-ordinated convex functions on quantum integral. Appl. Math. -Notes 2020, 20, 341–356. [Google Scholar]
  17. Bermudo, S.; Kórus, P.; Valdés, J.N. On q-Hermite–Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 160, 1–11. [Google Scholar] [CrossRef]
  18. Kunt, M.; Latif, M.A.; İşcan, İ.; Dragomir, S.S. Quantum Hermite–Hadamard type inequality and some estimates of quantum midpoint type inequalities for double integrals. Sigma J. Eng. Nat. Sci. 2019, 37, 207–223. [Google Scholar]
  19. Kalsoom, H.; Wu, J.D.; Hussain, S.; Latif, M.A. Simpson’s type inequalities for co-ordinated convex functions on quantum calculus. Symmetry 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
  20. Latif, M.A.; Dragomir, S.S.; Momoniat, E. Some q-analogues of Hermite–Hadamard inequality of functions of two variables on finite rectangles in the plane. J. King-Saud Univ. Sci. 2017, 29, 263–273. [Google Scholar] [CrossRef]
  21. Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite-Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar]
  22. Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum integral inequalities via preinvex functions. Appl. Math. Comput. 2015, 269, 242–251. [Google Scholar]
  23. Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef] [Green Version]
  24. Vivas-Cortez, M.; Liko, R.; Kashuri, A.; Hernández Hernández, J.E. New Quantum Estimates of Trapezium-Type Inequalities for Generalized ϕ-Convex Functions. Mathematics 2019, 7, 1047. [Google Scholar] [CrossRef] [Green Version]
  25. Vivas-Cortez, M.; Liko, R.; Kashuri, A.; Hernández Hernández, J.E. Quantum Estimates of Ostrowski Inequalities for Generalized ϕ-Convex Functions. Symmetry 2019, 11, 1513. [Google Scholar] [CrossRef] [Green Version]
  26. Vivas-Cortez, M.; Liko, R.; Kashuri, A.; Hernández Hernández, J.E. Some New q-Integral Inequalities Using Generalized Quantum Montgomery Identity via Preinvex Functions. Symmetry 2020, 12, 553. [Google Scholar] [CrossRef] [Green Version]
  27. Vivas-Cortez, M.; Kashuri, A.; Liko, R.; Hernández Hernández, J.E. Quantum Trapezium-Type Inequalities Using Generalized f-Convex Functions. Axioms 2020, 9, 12. [Google Scholar] [CrossRef] [Green Version]
  28. Cortez, M.V.; García, C.; Hernández Hernández, J.E. Ostrowski-type inequalities for functions whose derivative modulus is relatively convex. Appl. Math. Inf. Sci. 2019, 13, 121–127. [Google Scholar] [CrossRef]
  29. Viloria, J.M.; Vivas-Cortez, M. Jensen’s inequality for convex functions on n-coordinates. Appl. Math. Inf. Sci. 2018, 12, 931–935. [Google Scholar] [CrossRef]
  30. Vivas-Cortez, M.; García, C. Ostrowski type inequalities for functions whose derivatives are (m,h1,h2)-convex. Appl. Math. Inf. Sci. 2017, 11, 79–86. [Google Scholar] [CrossRef]
  31. Cortez, M.V. Féjer type inequalities for (s, m)-Convex functions in second sense. Appl. Math. Inf. Sci. 2016, 10, 1689–1696. [Google Scholar] [CrossRef]
  32. Zhuang, H.; Liu, W.; Park, J. Some quantum estimates of Hermite-Hadmard inequalities for quasi-convex functions. Mathematics 2019, 7, 152. [Google Scholar] [CrossRef] [Green Version]
  33. Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 121, 1–13. [Google Scholar] [CrossRef] [Green Version]
  34. Budak, H.; Ali, M.A.; Tarhanaci, M. Some new q-Hermite–Hadamard like inequalities for co-ordinated convex functions. J. Optim. Theory Appl. 2020, 185, 1–16. [Google Scholar] [CrossRef]
  35. Ali, M.A.; Budak, H.; Sarikaya, M.Z. On Some New Trapezoidal Type Inequalities for the Functions of Two Variables via Quantum Calculus. Available online: https://www.researchgate.net/publication/342411316. (accessed on 20 July 2020).

Share and Cite

MDPI and ACS Style

Vivas-Cortez, M.; Aamir Ali, M.; Kashuri, A.; Bashir Sial, I.; Zhang, Z. Some New Newton’s Type Integral Inequalities for Co-Ordinated Convex Functions in Quantum Calculus. Symmetry 2020, 12, 1476. https://doi.org/10.3390/sym12091476

AMA Style

Vivas-Cortez M, Aamir Ali M, Kashuri A, Bashir Sial I, Zhang Z. Some New Newton’s Type Integral Inequalities for Co-Ordinated Convex Functions in Quantum Calculus. Symmetry. 2020; 12(9):1476. https://doi.org/10.3390/sym12091476

Chicago/Turabian Style

Vivas-Cortez, Miguel, Muhammad Aamir Ali, Artion Kashuri, Ifra Bashir Sial, and Zhiyue Zhang. 2020. "Some New Newton’s Type Integral Inequalities for Co-Ordinated Convex Functions in Quantum Calculus" Symmetry 12, no. 9: 1476. https://doi.org/10.3390/sym12091476

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop