Explicit Formulas for All Scator Holomorphic Functions in the (1+2)-Dimensional Case
Abstract
:1. Introduction
2. Generalized Cauchy–Riemann System in the Case
- Components exponential functions
- Linear functions
- Exceptional solutions
3. Components Exponential Functions
4. Linear Functions
5. Exceptional Solutions
- , , .Then and . Hence and we get the following solution:
- , , .Then, and . Hence and, as a result, we get the solution:
Author Contributions
Funding
Conflicts of Interest
References
- Fernández-Guasti, M.; Zaldívar, F. An elliptic non distributive algebra. Adv. Appl. Clifford Algebr. 2013, 23, 825–835. [Google Scholar] [CrossRef]
- Kobus, A.; Cieśliński, J.L. On the Geometry of the Hyperbolic Scator Space in 1+2 Dimensions. Adv. Appl. Clifford Algebr. 2017, 27, 1369–1386. [Google Scholar] [CrossRef] [Green Version]
- Cieśliński, J.L.; Kobus, A. On the Product Rule for the Hyperbolic Scator Algebra. Axioms 2020, 9, 55. [Google Scholar] [CrossRef]
- Fernández-Guasti, M. Time and space transformations in a scator deformed Lorentz metric. Eur. Phys. J. Plus 2014, 129, 195. [Google Scholar] [CrossRef]
- Fernández-Guasti, M. Composition of velocities and momentum transformations in a scator-deformed Lorentz metric. Eur. Phys. J. Plus 2020, 135, 542. [Google Scholar] [CrossRef]
- Fernández-Guasti, M. A Non-distributive Extension of Complex Numbers to Higher Dimensions. Adv. Appl. Clifford Algebr. 2015, 25, 829–849. [Google Scholar] [CrossRef]
- Fernández-Guasti, M. Differential quotients in elliptic scator algebra. Math. Meth. Appl. Sci. 2018, 41, 4827–4840. [Google Scholar] [CrossRef]
- Fernández-Guasti, M. Components exponential scator holomorphic function. Math. Meth. Appl. Sci. 2020, 43, 1017–1034. [Google Scholar] [CrossRef]
- Sudbery, A. Quaternionic analysis. Math. Proc. Camb. Philos. Soc. 1979, 85, 199–225. [Google Scholar] [CrossRef] [Green Version]
- De Leo, S.; Rotelli, P.P. Quaternionic Analyticity. Appl. Math. Lett. 2003, 16, 1077–1081. [Google Scholar] [CrossRef]
- Ryan, J. Clifford analysis. In Lectures on Clifford (Geometric) Algebras and Applications; Abłamowicz, R., Sobczyk, G., Eds.; Birkhäuser, Boston-Basel-Berlin: Basel, Switzerland, 2004; pp. 53–89. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cieśliński, J.L.; Zhalukevich, D. Explicit Formulas for All Scator Holomorphic Functions in the (1+2)-Dimensional Case. Symmetry 2020, 12, 1550. https://doi.org/10.3390/sym12091550
Cieśliński JL, Zhalukevich D. Explicit Formulas for All Scator Holomorphic Functions in the (1+2)-Dimensional Case. Symmetry. 2020; 12(9):1550. https://doi.org/10.3390/sym12091550
Chicago/Turabian StyleCieśliński, Jan L., and Dzianis Zhalukevich. 2020. "Explicit Formulas for All Scator Holomorphic Functions in the (1+2)-Dimensional Case" Symmetry 12, no. 9: 1550. https://doi.org/10.3390/sym12091550